Skip to main content

Genetic diversity and structure of teak (Tectona grandis L. f.) and dahat (Tectona hamiltoniana Wall.) based on chloroplast microsatellites and Amplified Fragment Length Polymorphism markers

Abstract

Teak (Tectona grandis L. f.) is a tropical forest tree species naturally occurring in India, Laos, Myanmar and Thailand. The closely related dahat (Tectona hamiltoniana Wall.) is an endemic tree species confined to Myanmar. Two chloroplast Simple Sequence Repeat (cpSSR) and sixty-nine Amplified Fragment Length Polymorphism (AFLP) markers were applied to assess patterns of genetic variation in four T. grandis and three T. hamiltoniana populations in Myanmar. The cpSSR analysis confirmed a clear genetic differentiation between species, revealing a single haplotype (H1) in T. grandis, while the three T. hamiltoniana populations were fixed on different haplotypes (H2 or H3). AFLP analysis revealed that genetic diversity varied between species, showing a slightly higher variation in T. grandis than in T. hamiltoniana. The T. hamiltoniana populations showed similar levels of genetic variation, while parameters varied considerably in T. grandis populations. Analyses of Molecular Variance revealed significant genetic differentiation between the two species (38.4 %, p < 0.05) and among populations within species. Genetic variation mainly resided within populations. Significant pairwise genetic differentiation (pairwise F ST ) was detected between most populations (p < 0.05). An Unweighted Pair Group Method with Arithmetic Mean dendrogram based on Nei’s genetic distances revealed a clear genetic differentiation between species. Diagnostic AFLP markers with complete or nearly complete differentiation between species and complete differentiation at cpDNA markers indicated strong phylogenetic divergence between teak and dahat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bedi YS (1990) Cytology of hardwoods. Proc Indian Acad Sci (Plant Sci) 100:91–95

    Google Scholar 

  • Cantino PD, Harley RM, Wagstaff SJ (1992) Genera of labiatae: status and classification. In: Harley RM, Reynolds T (eds) Advances in Labiate Science. Royal Botanic Gardens, Kew, Richmond, pp 511–522

  • Cao CP, Finkeldey R, Siregar I, Siregar U, Gailing O (2006) Genetic diversity within and among populations of Shorea leprosula Miq. and Shorea parvifolia Dyer (Dipterocarpaceae) in Indonesia detected by AFLPs. Tree Genet Genomes 2:225–239

    Article  Google Scholar 

  • Castillo-Cárdenas MF, Toro-Perea N, Cárdenas-Henao H (2005) Population genetic structure of neotropical mangrove species on the Colombian Pacific Coast: Pelliciera rhizophorae (Pellicieraceae). Biotropica 37:266–273

    Article  Google Scholar 

  • Changtragoon S, Szmidt AE (2000) Genetic diversity of teak (Tectona grandis Linn. F.) in Thailand revealed by Random Amplified Polymorphic DNA (RAPD). In: IUFRO Working Party: tropical species breeding and genetic resources: Forest genetics for the next millennium, Durban, South Africa, pp 82–83

  • Chung MG, Kan SS (1994) Genetic variation and population structure in Korean populations of Eurya japonica (Theaceae). Am J Bot 81:1077–1082

    Article  Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, Huylenbroeck JV, Bockstaele EV, Rolda’n-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris L. Mill.) in Belgium as revealed by amplified fragment polymorphism and microsatellite markers. Mol Ecol 12:845–857

    Article  CAS  PubMed  Google Scholar 

  • Eckenwalder JE (1984) Natural intersectional hybridization between North-American species of Populus (Salicaceae) in Sections Aigeiros and Tacamahaca. 3. Paleobotany and Evolution. Can J Bot 62:336–342

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Clad 5:164–166

    Google Scholar 

  • Finkeldey R, Gailing O (2013) Genetics of chloroplasts. In: Maloy S, Brenner KH (eds) Encyclopedia of genetics. Elsevier, Amsterdam, pp 525–527

    Chapter  Google Scholar 

  • Finkeldey R, Hattemer HH (2007) Tropical forest genetics. Springer, New York

    Book  Google Scholar 

  • Fofana I, Ofori D, Poitel M, Verhaegen D (2009) Diversity and genetic structure of teak (Tectona grandis Linn. f.) in its natural range using DNA microsatellite markers. New For 37:175–195

    Article  Google Scholar 

  • Gailing O, Bachmann K (2003) QTL mapping reveals a two-step model for the evolutionary reduction of inner microsporangia within the asteracean genus Microseris. Theor Appl Genet 107:893–901

    Article  CAS  PubMed  Google Scholar 

  • Gill BS, Bedi YS et al (1983) Cytopalynological studies in woody members of family Verbenaceae from north-west and central India. J Indian Bot Soc 62:235–244

    Google Scholar 

  • Gottwald H, Parameswaran N (1980) Anatomy of wood and bark of Tectona (Verbeneacea) in relation in taxonomy. Bot Jahrb Syst 101:363–384

    Google Scholar 

  • Gyi KK, Tint K (1998) Management status of natural teak forests. In: Teak for the future. Proceedings of the Second Regional Seminar on Teak, Yangon, Myanmar. FAO Regional Office for Asia and the Pacific, Bangkok, pp 27–48

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hedegart T (1976) Breeding system, variation and genetic improvement of teak (Tectona grandis Linn. f.). In: Burly J, Styles BT (eds) Tropical trees. Academic Press, London, pp 109–123

    Google Scholar 

  • Hedegart T (1978) Data sheets on species undergoing genetic impoverishment. In: Benth, Hook (eds) Tectona hamiltoniana Wall. and Tectona philippinensis. FAO, Rome

    Google Scholar 

  • Huh MK, Huh HW, Back K (2005) Genetic diversity and population structure of Acanthopanax sessiliflorus (Araliaceae) using AFLP. Korean J Genet 27:71–79

    CAS  Google Scholar 

  • Kaosa-ard A (1981) Teak: its natural distribution and related factors. Nat His Bull Siam Soc 29:55–74

    Google Scholar 

  • Kim MS, Brunsfeld SJ, McDonald GI (2003) Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor Appl Genet 106:1004–1010

    PubMed  Google Scholar 

  • Kjaer ED, Suangtho V (1995) Out-crossing rate of teak (Tectona grandis Linn.f.). Silv Genet 44:175–177

    Google Scholar 

  • Kjaer ED, Siegismund HR, Suangtho V (1996) A multivariate study on genetic variation in teak (Tectona grandis Linn. f.). Silv Genet 45:361–368

    Google Scholar 

  • Lara-Gomez G, Gailing O, Finkeldey R (2005) Genetic variation in isolated Mexican populations of the endemic maple Acer skutchii Rehd. Allg Forst- u J-Ztg 176:97–103

    Google Scholar 

  • Leonardi S, Menozzi P (1995) Genetic variability of Fagus sylvatica L. in Italy. The role of post-glacial recolonization. Heredity 75:35–44

    Article  Google Scholar 

  • Luu HT (2005) Genetic variation and the reproductive system of Dipterocarpus cf. condorensis Pierre in Vietnam. PhD Thesis, University of Göttingen, Germany

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Mcdermott JM, Mcdonald BA (1993) Gene flow in plant pathosystems. Annu Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • Minn Y (2012) Investigations of genetic variation of teak (Tectona grandis Linn. f.) in Myanmar for conservation and sustainable utilization of genetic resources. Ph.D. Dissertation. University of Göttingen, Germany

  • Minn Y, Prinz K, Finkeldey R (2014) Genetic variation of teak (Tectona grandis Linn. f.) in Myanmar revealed by microsatellites. Tree Genet Genom 10:1435–1449

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet 89:583–590

    CAS  Google Scholar 

  • Nicodemus A, Nagarajan B, Narayanan C (2003) RAPD variation in Indian teak populations and its implications for breeding and conservation. In: Proceedings of the international conference on quality timber products of teak from sustainable forest management. Peechi, India, pp 321–330

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2006) Extraction, amplification and characterization of wood DNA from Dipterocarpaceae. Plant Mol Biol Rep 24:45–55

    Article  CAS  Google Scholar 

  • Rachmayanti Y, Leinemann L, Gailing O, Finkeldey R (2009) DNA from processed and unprocessed wood: factors influencing the isolation success. For Sci Intl Genet 3:185–192

    Article  CAS  Google Scholar 

  • Russel JR, Weber JC, Booth A, Powell W, Sotelo-Montes C, Dawson IK (1999) Genetic variation of Calycophyllum spruceanum in the Peruvian Amazon Basin, revealed by amplified fragment length polymorphism (AFLP) analysis. Mol Ecol 8:199–204

    Article  Google Scholar 

  • Shrestha MK, Volkaert H, Straeten DVD (2005) Assessment of genetic diversity in Tectona grandis using Amplified Fragment Length Polymorphism markers. Can J For Res 35:1017–1022

    Article  CAS  Google Scholar 

  • Sreekanth PM, Balasundaran M, Nazeem PA, Suma TB (2012) Genetic diversity of nine natural Tectona grandis L.f. populations of the Western Ghats in Southern India. Conserv Genet 13:1409–1419. doi:10.1007/s10592-012-0383-5

    Article  Google Scholar 

  • Subramanian KN, Nicodemus A, Radhamani A (1994) Tree improvement in India. For Gen Res 22:33–36

  • Swofford DL (1993) PAUP- a computer-program for phylogenetic inference using maximum parsimony. J Gen Physiol 102:A9

    Google Scholar 

  • Tewari DN (1992) A monograph on teak (Tectona grandis L. f.). International Book Distributors, Dehra Dun, India

  • Troup RS (1921) The silviculture of Indian trees. The Clarendon Press, Oxford

    Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale. In. Université Libre de Bruxelles, Belgium

  • Verhaegen D, Ofori D, Fofana IJ, Poitel M, Vaillant A (2005) Development and characterization of microsatellite markers in Tectona grandis Linn. f. Mol Ecol Notes 5:945–947

    Article  CAS  Google Scholar 

  • Verhaegen D, Fofana IJ, Logossa ZA, Ofori D (2010) What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia? Tree Genet Genom 6:717–733

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA-fingerprinting. Nucl Acid Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  CAS  PubMed  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, Wallingford

    Book  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Bel J Bot 129:157–159

  • Young AG, Boshier D, Boyle TJB (2000) Forest conservation genetics principles and practice. CSIRO Pub, Collingwood

    Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was conducted with scholarship support from German Academic Exchange Services for the first author’s master degree course. Technical assistances from Olga Artes and Alexandra Dolnyska are greatly appreciated.

Funding

The study was funded by German Academic Exchange Services. The first author received a scholarship from German Academic Exchange Services for his master degree. The second and third authors supervised the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazar Minn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minn, Y., Gailing, O. & Finkeldey, R. Genetic diversity and structure of teak (Tectona grandis L. f.) and dahat (Tectona hamiltoniana Wall.) based on chloroplast microsatellites and Amplified Fragment Length Polymorphism markers. Genet Resour Crop Evol 63, 961–974 (2016). https://doi.org/10.1007/s10722-015-0293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0293-8

Keywords

  • AFLPs
  • cpSSRs
  • Genetic variation
  • Myanmar
  • Tectona grandis
  • Tectona hamiltoniana