Skip to main content
Log in

Expansion of female sex organs in response to prolonged virginity in Cannabis sativa (marijuana)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Female flowers of Cannabis sativa in wild-growing populations and in hemp plantations are almost always well supplied with pollen. The style-stigma portion of the pistils of such plants was found to average only about 3 mm in length and to invariably be two-branched. By contrast, “buds” (congested female inflorescences), the standard form of marijuana now produced in the illicit and medicinal marijuana sectors, are protected against pollen. This report documents that in the absence of pollen, the style-stigma parts of virgin pistils expand notably, average over 8 mm in length, and tend to develop more than two branches and to increase in girth. From an evolutionary viewpoint, this expansion of pollen-receptive tissue is an apparent adaptation for increasing the probability of fertilizing the females when males are extremely scarce. From a practical viewpoint, the expanded presence of stigma tissues may be both advantageous and disadvantageous. The high-THC secretory gland heads of Cannabis tend to fall away from marijuana buds, significantly decreasing pharmacological potency, but many gland heads become stuck to the receptive papillae of the stigmas, reducing the loss. Although stigmas constitute a small proportion of marijuana, their distinctive chemistry could have health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai WN, Zeng YF, Liao WJ, Zhang DY (2006) Flowering phenology and wind-pollination efficacy of heterodichogamous Juglans mandshurica (Juglandaceae). Ann Bot 98:397–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Bawa KS (1980) Evolution of dioecy in flowering plants. Ann Rev Ecol Syst 11:15–39

    Article  Google Scholar 

  • Buszard D, Schwabe WW (1995) Effect of previous crop load on stigmatic morphology of apple flowers. J Am Soc Hortic Sci 120:566–570

    Google Scholar 

  • Cabezudo B, Recio M, Sánchez-Laulhé JM, Del Mar Trigo M, Toro FJ, Polvorinos F (1997) Atmospheric transportation of marihuana pollen from North Africa to the southwest of Europe. Atmos Environ 31:3323–3328

    Article  CAS  Google Scholar 

  • Clarke RC (1977) The botany and ecology of Cannabis. Pods, Ben Lomond

    Google Scholar 

  • Clarke RC, Merlin MD (2013) Cannabis: evolution and ethnobotany. University of California Press, Los Angeles

    Google Scholar 

  • Cristiana Moliterni VM, Cattivelli L, Ranalli P, Mandolino G (2004) The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140:95–106

    Article  Google Scholar 

  • Cruden WC (2009) Pollen grain size, stigma depth, and style length: the relationships revisited. Plant Syst Evol 278:223–238

    Article  Google Scholar 

  • Cruden RW, Lyon DL (1985) Correlations among stigma depth, style length, and pollen grain size: Do they reflect function or phylogeny? Bot Gaz 146:143–149

    Article  Google Scholar 

  • Elleman CJ, Franklin-Tong V, Dickinson HG (1992) Pollination in species with dry stigmas: the nature of the early stigmatic response and the pathway taken by pollen tubes. New Phytol 121:413–424

    Article  Google Scholar 

  • Faegri K, Iverson J, Kaland PE, Krzywinski K (1989) Textbook of pollen analysis, 4th edn. Wiley, New York

    Google Scholar 

  • Finta-Korpel’ová Z, Berenji J (2007) Trends and achievements in industrial hemp (Cannabis sativa L.) breeding. Bull Hops Sorghum Med Plants 39(80):63–75

    Google Scholar 

  • Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann Bot 103:1515–1527

    Article  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison Y (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Heslop-Harrison J, Heslop-Harrison Y (1985) Surfaces and secretions in the pollen–stigma interaction: a brief review. J Cell Sci Suppl 2:287–300

    Article  PubMed  CAS  Google Scholar 

  • Khan LA (2007) Development of high yielding saffron mutant. Acta Hortic 739:255–257

    Article  Google Scholar 

  • Lindemayr H, Jager S (1980) Occupational immediate type allergy to hemp pollen and hashish. Dermatosen in Beruf und Umwelt 28(1):17–19 (in German)

    PubMed  CAS  Google Scholar 

  • Miglia KJ, Freeman DC (1996) Delayed pollination, stigma length, sex expression, and progeny sex ratio in spinach, Spinacia oleracea (Chenopodiaceae). Am J Bot 83:326–332

    Article  Google Scholar 

  • Moghaddasi MS (2010) Saffron chemicals and medicine usage. J Med Plant Res 4:427–430

    CAS  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Quinn JA, Bram MR, Taylor TE (2000) Female resource allocation in response to pollen availability in plants from freshwater and salt marsh populations of Amaranthus cannabinus. J Torrey Bot Soc 127:83–86

    Article  Google Scholar 

  • Ramesha BT, Yetish MD, Ravikanth G, Ganeshaia KN, Ghazoul J, Shaanker RU (2011) Stylish lengths: mate choice in flowers. J Biosci 36:229–234

    Article  PubMed  CAS  Google Scholar 

  • Ratnaswamy MC (1954) Note on the presence of branched stigmas in Pennisetum typhoides, Stapf and Hubbard. Madras Agric J 41(2):43–44

    Google Scholar 

  • Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606

    Article  Google Scholar 

  • Singh AB, Kumar P (2003) Aeroallergens in clinical practice of allergy in India: an overview. Ann Agric Environ Med 10:131–136

    PubMed  Google Scholar 

  • Singh AK, Khera P, Priyadarshi R, Patil V, Dhasmana M, Shenoy V (2012) Occurrence of trifid stigma morphology in a maintainer line of rice (Orzya sativa L.). Int J Plant Breed Genet 6:252–255

    Article  Google Scholar 

  • Small E (1978) A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot 3:37–76

    Article  Google Scholar 

  • Small E (1981) A numerical analysis of morpho-geographic groups of cultivars of Humulus lupulus based on samples of cones. Can J Bot 59:311–324

    Article  Google Scholar 

  • Small E, Antle T (2003) A preliminary study of pollen dispersal in Cannabis sativa. J Ind Hemp 8(2):37–50

    Article  Google Scholar 

  • Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435

    Article  Google Scholar 

  • Stokes JR, Hartel R, Ford LB, Casale TB (2000) Cannabis (hemp) positive skin tests and respiratory symptoms. Ann Allergy Asthma Immunol 85:238–240

    Article  PubMed  CAS  Google Scholar 

  • Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti E, Zjhra M, Hall JC, Chase MW (2002) Urticalean rosids: circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-trnF, and ndhF sequences. Am J Bot 89:1531–1546

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Degawa M, Kawata E, Hayashi J, Shoyama Y (1998) Identification of Cannabis pollens using an allergic patient’s immunoglobulin E and purification and characterization of allergens in Cannabis pollens. Forensic Sci Int 97:139–153

    Article  PubMed  CAS  Google Scholar 

  • Travers SE, Shea K (2001) Individual variation, gametophytic competition and style length: Does size affect paternity? Evol Ecol Res 3:729–745

    Google Scholar 

  • Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Gebrüder Borntraeger, Leipzig

    Google Scholar 

  • Yang MQ, van Velzen R, Bakker FT, Sattarian A, Li DZ, Yi TS (2013) Molecular phylogenetics and character evolution of Cannabaceae. Taxon 62:473–485

    Article  Google Scholar 

Download references

Acknowledgments

We thank Brenda Brookes and Tanya Antle for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Small.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Small, E., Naraine, S.G.U. Expansion of female sex organs in response to prolonged virginity in Cannabis sativa (marijuana). Genet Resour Crop Evol 63, 339–348 (2016). https://doi.org/10.1007/s10722-015-0253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0253-3

Keywords

Navigation