Qualitative traits of perennial wheat lines derived from different Thinopyrum species

Abstract

Four perennial wheat genotypes derived from crosses between Triticum aestivum and Thinopyrum elongatum, Th. intermedium or Th. ponticum were grown in Central Italy over 2 years of testing, and compared for their agronomical, biochemical, nutritional and technological traits with three commercial common wheat cultivars. Perennial wheat derivatives were characterized by post-harvest regrowth, small kernels, high number of tillers, high protein content and reduced sodium dodecyl sulphate sedimentation volume. Lines 11955 and OK72 exhibited soft kernel texture due to wild-type alleles at the puroindoline loci, whereas lines 235A and 280B produced medium-hard kernels for the presence of novel puroindolines A and B inherited from Th. elongatum and Th. intermedium, respectively. In addition, perennial wheat genotypes presented a high content of carotenoids and 5-n-alkylresorcinols compared with their annual counterparts. AR composition of line 235A, as determined by gas chromatography-mass spectrometry, was characterized by a high percentage (64.7 %) of long-chain (C21:0 + C23:0 + C25:0) homologues, which are claimed to prevent cardiovascular diseases and cancer. In addition, line OK72 was unique in having a C17/C21 homologue ratio as high as 0.34, likely inherited from Th. ponticum. This line along with line 280B also showed a high content of total dietary fiber. Finally, peculiar storage protein composition and kernel texture were observed in some perennial durum wheat derivatives obtained from crosses between T. turgidum subsp. durum and Th. junceiforme. This wheatgrass species was found to contain the 10-mer QQPQDAVQPF peptide, which is able to prevent prolamins from triggering inflammatory responses in celiac patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. AACC (1995) American Association of Cereal Chemists, Approved Methods, 9th edn. Methods, St. Paul, pp 56–70

  2. AOAC (1975) Association of Official Analytical Chemists. Pigment in flour. “Official Final Action” 12th edn. Methods, Washington, p 14045

  3. AOAC (1995) Association of Official Analytical Chemists. Insoluble dietary fiber in foods—enzymatic gravimetric method. “Official Methods of Analysis” 16th edn. Methods 991.42, Washington DC

  4. Bell LW (2014) Economics and system applications for perennial grain crops in dryland farming systems in Australia. In: Proceedings of the FAO expert workshop. Perennial crops for food security, pp 169–186

  5. Bellato S, Ciccoritti R, Del Frate V, Sgrulletta D, Carbone K (2013) Influence of genotype and environment on the content of 5-n alkylresorcinol on the antiradical activity of whole grain durum wheat grain. J Cereal Sci 57:162–169

    CAS  Article  Google Scholar 

  6. Breiman A, Graur D (1995) Wheat evaluation. Israel J Plant Sci 43:58–95

    Article  Google Scholar 

  7. Ciccoritti R, Carbone K, Bellato S, Pogna NE, Sgrulletta D (2013) Content and relative composition of some phytochemicals in diploid, tetraploid and hexaploid Triticum species with potential nutraceutical properties. J Cereal Sci 57:200–206

    CAS  Article  Google Scholar 

  8. Corona V, Gazza L, Boggini G, Pogna NE (2001) Variation in friabilin composition as determined by A-PAGE fractionation and PCR amplification and its relationship to grain hardness in bread wheat. J Cereal Sci 34:243–250

    CAS  Article  Google Scholar 

  9. DeHaan LR, Val Tassel DL, Cox TS (2005) Perennial grain crops: a synthesis of ecology and plant breeding. Renew Agric Food Syst 20:5–14

    Article  Google Scholar 

  10. DeWet JM (1981) Grasses and the culture history of man. Ann Mo Bot Gard 68:87–104

    Article  Google Scholar 

  11. FAO (2014) Food Outlook. http://www.fao.org

  12. Gazza L, Conti S, Taddei F, Pogna NE (2006) Molecular characterization of puroindolines and their encoding genes in Aegilops ventricosa. Mol Breed 17:191–200

    CAS  Article  Google Scholar 

  13. Giroux M, Morris CF (1997) A glycine to serine change in puroindoline b is associated with grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    CAS  Article  Google Scholar 

  14. Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Bukler ES, Cox CM, Cox TS, Crew TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J et al (2010) Increased food and ecosystem security via perennial grains. Science 328:1638–1639

    PubMed  CAS  Article  Google Scholar 

  15. Hayes RC, Newell MT, DeHaan LR, Murphy KM, Crane S, Norton MR, Wade LJ, Newberry M, Fahim M, Jones SS, Cox TS, Larkin PJ (2012) Perennial cereal crops: an initial evaluation of wheat derivatives. F Crop Res 133:68–89

    Article  Google Scholar 

  16. Landberg R, Andersson AAM, Aman P, Kamal-Eldin A (2009) Comparison of GC and colorimetry for the determination of alkylresorcinol homologues in cereal grains and products. Food Chem 113:1363–1369

    CAS  Article  Google Scholar 

  17. McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85(11):665–675

    PubMed  CAS  Google Scholar 

  18. McCleary BV, Gibson TS, Mugford DC (1997) Measurement of total starch in cereal products by amyloglucosidase-α-amylase method: collaborative study. J AOAC Int 80:571–579

    CAS  Google Scholar 

  19. McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion and selected plant materials: collaborative study. J AOAC Int 85:1103–1111

    PubMed  CAS  Google Scholar 

  20. Moore J, Yu LL (2008) Methods for antioxidant capacity estimation of wheat and wheat-based food products. In: Yu LL (ed) Wheat antioxidant. Mac Graw-Hill, New York, pp 147–150

    Google Scholar 

  21. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    CAS  Article  Google Scholar 

  22. Pogna NE, Autran JC, Mellini F, Lafiandra D, Feillet P (1990) Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci 11:15–34

    CAS  Article  Google Scholar 

  23. Reganold JP, Elliot LF, Unger YL (1987) Long-term effects of organic and conventional farming on soil erosion. Nature 330:370–372

    Article  Google Scholar 

  24. Ross A, Shepherd M, Schupphaus M, Sinclair V, Alfaro B, Kamal-Eldin A, Aman P (2003) Alkylresorcinols in cereals and cereal products. J Agric Food Chem 51:4111–4118

    PubMed  CAS  Article  Google Scholar 

  25. Silano M, Di Benedetto R, Trecca A, Arrabito G, Leonardi F, De Vincenzi M (2007) A decapeptide from durum wheat prevents celiac peripheral blood lymphocytes from activation by gliadin peptides. Pediatr Res 61:67–71

    PubMed  CAS  Article  Google Scholar 

  26. Stasiuk M, Bartosiewicz D, Kozubek A (2008) Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chem 108:996–1001

    PubMed  CAS  Article  Google Scholar 

  27. Wagoner P (1990) Perennial grain development: past efforts and potential for the future. Crit Rev Plant Sci 9:381–408

    Article  Google Scholar 

  28. Zhang X, DeHaan LR, Higgins LA, Markowski TW, Wyse DL, Anderson JA (2014) New insights into high-molecular-weight gluteninsubunits and sub-genomes of the perennial crop Thinopyrum intermedium (Triticeae). J Cereal Sci 59:203–2010

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laura Gazza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gazza, L., Galassi, E., Ciccoritti, R. et al. Qualitative traits of perennial wheat lines derived from different Thinopyrum species. Genet Resour Crop Evol 63, 209–219 (2016). https://doi.org/10.1007/s10722-015-0240-8

Download citation

Keywords

  • Breadmaking quality
  • Kernel texture
  • Nutritional quality
  • Perennial wheat
  • Thinopyrum
  • Wheatgrass