Skip to main content
Log in

Copper nanoparticle induced macromutation in Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae): a pioneer report

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Dry seeds (moisture content: 11.41 %) of Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae) are treated with copper nanoparticles (Cu-NPs) suspension (3.2, 6.4, 12.7 and 19.1 µg mL−1; 24 and 48 h) for induction of macromutation. For comparison, seeds are also treated with ethyl methanesulphonate—EMS (0.25, 0.50 and 1.0 %; 3 and 6 h) and gamma irradiations (5, 10, 15, 20, 25, 30, 50 and 100 Gy). Seedling accumulation of Cu-NPs is quantified from Atomic Absorption Spectroscopic analysis. A total of eight macromutants (six viable: ‘bushy’, ‘seed-coat color’, ‘prostrate’, ‘heterophyllous leaf’, ‘broad elongated leaf’ and ‘small narrow leaf’; two non-viable: ‘viridis’ and ‘drooping leaf’) are indentified at M2 following Cu-NPs (four types, total mutation frequency 1.72 %, viable 1.21 %), EMS (four types, total 1.62 %, viable 1.55 %) and gamma irradiation (6 types, total 2.94 %, viable 2.08 %) treatments. The viable mutants segregated at M3 following Mendelian pattern. Mutation frequency is rather higher at initial doses of treatments. No mutants are recovered at higher doses (12.7 µg mL−1, 24 h and 19.1 µg mL−1, 48 h) of Cu-NPs. The mutants are cytologically normal (2n = 20) with low fertility (control: 60.6 %; mutant: 21.2–59.1 %) and viability (control: 39.6 %, mutant: 17.7–42.5 %) of pollen grains. This is the pioneer report of nanoparticles inducing phenotypic mutants, therefore can be an alternative source for conventional mutagens. Cu-NPs are cost effective and easily synthesized in the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Poly-phenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827. doi:10.1021/es202660k

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson S (2006) Evaluation of transgenic Campanula carpatica plants. In: epsilon undergraduate theses archive: vol. 6. Department of Agricultural Sciences, The Royal Veterinary and Agricultural University. http://ex-epsilon.slu.se:8080/archive/00001970/. Accessed 17 July 2014

  • Bolbhat SN, Dhumal KN (2009) Induced macromutations in horsegram [Macrotyloma uniflorum (Lam.) Verdc]. Legume Res Int J 32:278–281

    Google Scholar 

  • Caruthers SD, Wickline SA, Lanza GM (2007) Nanotechnological applications in medicine. Curr Opin Biotechnol 18:26–30. doi:10.1016/j.copbio.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103. doi:10.1088/0957-4484/23/8/085103

    Article  PubMed  Google Scholar 

  • Datta KKR, Kulkarni C, Eswaramoorthy M (2010) Aminoclay: a permselective matrix to stabilize copper nanoparticles. Chem Commun 46:616–618. doi:10.1039/B919421E

    Article  CAS  Google Scholar 

  • Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452. doi:10.1021/cm9708269

    Article  CAS  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410. doi:10.1128/AEM.07424-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430. doi:10.1016/j.aquatox.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  • Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232. doi:10.1016/S0033-7560(64)80069-7

    Article  Google Scholar 

  • Kharkwal MC (2012) Impact of mutation breeding in global agriculture. In: Proceedings of the national symposium on plant cytogenetics: new approaches. Department of Botany, Punjabi University, Patiala, India. p 31. 23–24 Feb 2012

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675. doi:10.1002/etc.58

    Article  CAS  PubMed  Google Scholar 

  • Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896. doi:10.1021/ja00063a006

    Article  CAS  Google Scholar 

  • Marks GE (1954) An aceto-carmine glycerol jelly for use in pollen-fertility counts. Stain Technol 29:277

    CAS  PubMed  Google Scholar 

  • Masarovičová E, Král'ová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22. doi:10.2478/eces-2013-0001

    Google Scholar 

  • Morris JB (2008) Macrotyloma axillare and M. uniflorum: descriptor analysis, anthocyanin indexes and potential uses. Genet Resour Crop Evol 55:5–8. doi:10.1007/s10722-007-9298-2

    Article  Google Scholar 

  • Mortimer M, Kasemets K, Kahru A (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189. doi:10.1016/j.tox.2009.07.007

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale F3O4, TiO2 and carbon particles on cucumber seedlings germination. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1732–1735. doi:10.1080/10934529.2011.633403

    Article  CAS  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi:10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Patolsky F, Timko BP, Yu G, Fang Y, Greytak AB, Zheng G, Lieber CM (2006) Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313:1100–1104. doi:10.1126/science.1128640

    Article  CAS  PubMed  Google Scholar 

  • Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu B, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide NPs on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989. doi:10.1128/aem.00650-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raikova OP, Panichkin LA, Raikova NN (2006) Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. In: Nanotechnologies and information technologies in the 21st Century. Proceedings of International science-practical conference, Moscow, pp 108–111

  • Regan SM, Moffatt BA (1990) Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell 21:877–889. doi:10.1105/tpc.2.9.877

    Article  Google Scholar 

  • Remédios C, Rosário F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot. doi:10.1155/2012/751686

    Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Agric Food 15:22–44

    Google Scholar 

  • Selivanov VN, Zorin EV (2001) Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Mater 4:66–69

    Google Scholar 

  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK (2011) To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282. doi:10.1016/j.envpol.2011.01.028

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valant J, Drobne D, Novak S (2012) Effect of ingested titanium dioxide nanoparticles on the digestive gland cell membrane of terrestrial isopods. Chemosphere 87:19–25. doi:10.1016/j.chemosphere.2011.11.047

    Article  CAS  PubMed  Google Scholar 

  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, Cingolani R, Pompa PP (2012) Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS ONE 7:e29980. doi:10.1371/journal.pone.0029980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao CM, Wang WX (2010) Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environ Sci Technol Lett 44:7699–7704. doi:10.1021/es101484s

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the grant aided by Department of Science and Technology-Promotion of University Research and Scientific Excellence (DST-PURSE) Programme, University of Kalyani, West Bengal, India. The authors are sincerely indebted to the anonymous reviewers for providing valuable and significant suggestions.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh Kumar Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, S., Mandal, A., Das, D. et al. Copper nanoparticle induced macromutation in Macrotyloma uniflorum (Lam.) Verdc. (Leguminosae): a pioneer report. Genet Resour Crop Evol 62, 165–175 (2015). https://doi.org/10.1007/s10722-015-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-015-0216-8

Keywords

Navigation