Advertisement

Genetic Resources and Crop Evolution

, Volume 62, Issue 7, pp 1079–1084 | Cite as

Microsatellite mapping of the gene for sham ramification in spikelets derived from a hexaploid wheat (Triticum spp.) accession 171ACS

  • Y. Amagai
  • A. J. Aliyeva
  • N. Kh. Aminov
  • P. Martinek
  • N. Watanabe
  • T. Kuboyama
Research Article

Abstract

Plants with elongated spikelet rachilla (sham ramification) have been found in the progenies of a cross between hexaploid wheat (Triticum aestivum L., 2n = 6x = 42, BBAADD genome) line ‘171ACS’ and durum wheat (T. durum Desf., 2n = 4x = 28, BBAA genome) ‘Bereketli-95’. 171ACS was the carrier of the genes for sham ramification and extra glume. Expression of both of these traits was suppressed in hexaploid wheat. The gene for “sham ramification” (shr 171ACS ) was mapped by genotyping F2 populations using microsatellite markers. In the F2 of 171ACS/Bereketli-95, the shr 171ACS gene was located in chromosome arm 5AL. The shr 171ACS gene and the gene for extra glume (exg) were completely linked. The shr 171ACS /exg gene complex was bracketed by the markers Xbarc319 and Xbarc232 on the long arm of chromosome 5A. In F2 hybrids between #145 and #629, and T. durum ‘LD222’, the shr 171ACS gene was completely linked to the exg gene, and the shr 171ACS /exg gene complex was located in the long arm of chromosome 5A. F2 hybrids between two tetraploid ramified progenies and T. jakubzineri Udacz. et Shakhm. (2n = 4x = 28, BBAA genome) indicated that shr 171ACS was allelic to shr1.

Keywords

Extra glume Genetic resource Sham ramification Triticum durum Desf. Triticumjakubzineri Udacz. et Schachm. Triticum turgidum L. Triticum vavilovii (Thum.) Jakubz. 

Notes

Acknowledgments

We acknowledge the gift of seed of tetraploid wheat from the National Small Grain Collection (NGSC), Aberdeen, Idaho, USA. We thank Dr. D. L. Klindworth, USDA-ARS, Northern Crop Science Lab., Fargo, USA for helpful comments on our manuscript. PM thanks for support of the Ministry of Agriculture of the Czech Republic, Project No. QJ1310055.

References

  1. Acevedo E, Silva P, Silva H (2002) Wheat growth and physiology. In: Curtis BC, Rajarm S, Gomez-Macpherson H (eds) Bread wheat improvement and production. FAO Plant Production and Protection Series 30. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  2. Alieva AJ, Aminov NKh (2013) Influence of D genome of wheat on expression of novel type spike branching in hybrid populations of 171ACS line. Russ J Genet 49:1119–1126CrossRefGoogle Scholar
  3. Aliyeva AJ (2009) Source of a new type of spike branching in hard wheats. Russ Agric Sci (Doklady Rossiiskoi Akademii Sel’skokhozyaistvennykh Nauk) 35:144–146Google Scholar
  4. Aliyeva AJ, Aminov NKh (2004) Genetic potential of morphogenesis of Triticum L. Russ Agric Sci (Doklady Rossiiskoi Akademii Sel’skokhozyaistvennykh Nauk) 6:8–10 (in Russian)Google Scholar
  5. Aliyeva AJ, Aminov NKh (2011) Inheritance of the branching in hybrid populations among tetraploid wheat species and the new branched spike line 166-Schakheli. Genet Resour Crop Evol 58:621–628CrossRefGoogle Scholar
  6. Amagai Y, Aliyeva AJ, Aminov NKh, Martinek P, Watanabe N, Kuboyama T (2014) Microsatellite mapping of the genes for sham ramification and extra glume in spikelets in tetraploid wheat. Genet Resour Crop Evol 61:491–498Google Scholar
  7. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  8. Eberhard FS, Zhang P, Lehmensiek A, Hare RA, Simpfendorfer S, Sutherland MW (2010) Chromosome composition of an F2 Triticum aestivum × T. turgidum ssp. durum cross analysed by DArT markers and MCFISH. Crop Pasture Sci 61:619–624CrossRefGoogle Scholar
  9. Gowayed S (2009) Egyptian wheat. Doctoral dissertation, University Kassel, Witzenhausen, pp 1–145Google Scholar
  10. Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol 58:3–10Google Scholar
  11. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  12. Kosuge K, Watanabe N, Kuboyama T, Melnik VM, Yanchenko VI, Rosova MA, Goncharov NP (2008) Cytological and microsatellite mapping of mutant genes for spherical grain and compact spikes in durum wheat. Euphytica 159:289–296CrossRefGoogle Scholar
  13. Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mam Genome 12:930–932CrossRefGoogle Scholar
  14. Martin A, Simpfendorfer S, Hare RA, Eberhard FS, Sutherland MW (2011) Retention of D genome chromosomes in pentaploid wheat crosses. Heredity 107:315–319PubMedCentralCrossRefPubMedGoogle Scholar
  15. Martinek P, Dobrovolskaya OB, Watanabe N, Peng Z-S, Vyhnánek T (2012) Vliv morfologické struktury klasu na formování výnosu pšenice a příslušné genetické zdroje (Influence of the spike morphological structure of wheat on yield formation and relevant genetic resources). International conference “Biodiversity in the Agricultural Landscape and Ecosystem” of the project REVERSE-INTERREG IVC, 13 June 2012, Piestany, Slovakia, pp 35–43 (in Czech)Google Scholar
  16. Masle-Meynard J, Sebillotte M (1981a) Etude de l‘hétérogénéité d‘un peuplement de blé d‘hiver. I. Notion de structure du peuplement. Agronomie 1:207–215CrossRefGoogle Scholar
  17. Masle-Meynard J, Sebillotte M (1981b) Etude de l‘hétérogénéité d‘un peuplement de blé d‘hiver. II. Origine des différentes categories d‘individus du peuplement: éléments de description de se structure. Agronomie 1:216–224Google Scholar
  18. Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci 145:139–149CrossRefGoogle Scholar
  19. Muramatsu M (2009) A presumed genetic system determining the number of spikelets per rachis node in the tribe Triticeae. Breed Sci 59:617–620CrossRefGoogle Scholar
  20. Reynolds MP, Pellegrineschi A, Skovmand B (2005) Sink-limitation to yield and biomass: a summary of some investigations in spring wheat. Ann Appl Biol 146:39–49CrossRefGoogle Scholar
  21. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998a) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  22. Röder MS, Korzun V, Gill BS, Ganal MW (1998b) The physical mapping of microsatellite markers in wheat. Genome 41:278–283CrossRefGoogle Scholar
  23. Sharma BC (1962) Vavilovoid—a new wheat mimic? J Hered 53:295Google Scholar
  24. Song QJ, Shi JR, Singh S, Fikus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560CrossRefPubMedGoogle Scholar
  25. Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051CrossRefPubMedGoogle Scholar
  26. Udachin RA, Shakmedov ISh (1976) New materials in the research of genus Triticum. Trudy po Prikl Bot, Genet i Selekts 56:147–150 (in Russian)Google Scholar
  27. Udachin RA, Shakmedov ISh (1977) A new wheat species, Triticum jakubzineri. Vestn Skh Nauki Mosc 2:41–43 (in Russian)Google Scholar
  28. Wang Z-L, Yin Y-P, He M-R, Cao H-M (1998) Source-sink manipulation effects on postanthesis photosynthesis and grain setting on spike in winter wheat. Photosynthetica 35:453–459CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Y. Amagai
    • 1
    • 2
  • A. J. Aliyeva
    • 3
  • N. Kh. Aminov
    • 3
  • P. Martinek
    • 4
  • N. Watanabe
    • 1
  • T. Kuboyama
    • 1
  1. 1.College of AgricultureIbaraki UniversityInashikiJapan
  2. 2.United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
  3. 3.Cytogenetics Department, Genetic Resources InstituteAzerbaijan National Academy of SciencesBakuAzerbaijan
  4. 4.Agrotest Fyto, Ltd.KroměřížCzech Republic

Personalised recommendations