Genetic Resources and Crop Evolution

, Volume 62, Issue 5, pp 765–794 | Cite as

The vulnerability of US apple (Malus) genetic resources

  • Gayle M. Volk
  • C. Thomas Chao
  • Jay Norelli
  • Susan K. Brown
  • Gennaro Fazio
  • Cameron Peace
  • Jim McFerson
  • Gan-Yuan Zhong
  • Peter Bretting
Research Article


Apple (Malus × domestica Borkh.) is one of the top three US fruit crops in production and value. Apple production has high costs for land, labor and inputs, and orchards are a long-term commitment. Production is dominated by only a few apple scion and rootstock cultivars, which increases its susceptibility to dynamic external threats. Apple crop wild relatives, including progenitor species Malus sieversii (Ledeb.) M. Roem., Malus orientalis Uglitzk., Malus sylvestris (L.) Mill., and Malus prunifolia (Willd.) Borkh., as well as many other readily hybridized species, have a wide range of biotic and abiotic stress resistances as well as desirable productivity and fruit quality attributes. However, access to wild materials is limited and wild Malus throughout the world is at risk of loss due to human encroachment and changing climatic patterns. The USDA-ARS National Plant Germplasm System (NPGS) Malus collection, maintained by the Plant Genetic Resources Unit in Geneva, NY, US is among the largest collections of cultivated apple and Malus species in the world. The collection currently has 5004 unique accessions in the field and 1603 seed accessions representing M. × domestica, 33 Malus species, and 15 hybrid species. Of the trees in the field, 3,070 are grafted and are represented by a core collection of 258 individuals. Many wild species accessions are represented as single seedlings (non-grafted). The crop vulnerability status of apple in the US is moderate because although there are a few breeders developing new commercial cultivars who also access Malus species, threats and challenges include new diseases, pests, and changing climate combined with industry needs and consumer demands, with a limited number of cultivars in production.


Breeding Disease resistance Genetic diversity Germplasm collections Malus Wild species 



We acknowledge and appreciate the valuable contributions to this manuscript provided by Dawn Dellefave, Tracy Leskey, Margarita Bateman, Jim Luby, and Kenong Xu.

Supplementary material

10722_2014_194_MOESM1_ESM.xlsx (63 kb)
Supplementary material 1 (XLSX 63 kb)


  1. Agnello A, Chouinard G, Firlej A, Turechek W, Vanoosthuyse F, Vincent C (2006) Tree fruit field guide to insect, mite and disease pests and natural enemies of Eastern North America. NRAES-169, 238 ppGoogle Scholar
  2. Aldwinckle HS, Gustafson HL, Forsline PL (1999) Evaluation of core subset of USDA apple germplasm collection for resistance to fire blight. Acta Hortic 489:269–272Google Scholar
  3. Aldwinckle HS, Forsline PL, Gustafson HL, Reddy MVB (2002) Fire blight resistance of Malus species from Sichuan (China), Russian Caucasus, Turkey and Germany. Acta Hortic 590:369–372Google Scholar
  4. Atkinson CJ, Brennan RM, Jones HG (2013) Declining chilling and its impact on temperate perennial crops. Environ Exp Bot 91:48–62Google Scholar
  5. Auvil TD, Schmidt TR, Hanrahan I, Castillo F, McFerson JR, Fazio G (2011) Evaluation of dwarfing rootstocks in Washington apple replant sites. Acta Hortic 903:265–271Google Scholar
  6. Baric S, Dalla-Via J (2004) A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. J Microbiol Methods 57:135–145PubMedGoogle Scholar
  7. Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecol Lett 16(11):1331–1338PubMedGoogle Scholar
  8. Barton DW (1975) Preserving genetic diversity. N Y Food Life Sci 9:18Google Scholar
  9. Bassett CL, Glenn DM, Forsline PL, Wisniewski ME, Farrell RE Jr (2011) Characterizing water use efficiency and water deficit responses in apple (Malus × domestica Borkh. and Malus sieversii Ledeb.) M. Roem. HortScience 46:1079–1084Google Scholar
  10. Benson LL, Lamboy WF, Zimmerman RH (2001) Molecular identification of Malus hupehensis (Tea Crabapple) accessions using simple sequence repeats. HortScience 36:961–966Google Scholar
  11. Biggs AR, Miller SS (2001) Relative susceptibility of selected apple cultivars to Colletotrichum acutatum. Plant Dis 85(6):657–660Google Scholar
  12. Biggs AR, Miller SS (2005) Comparative relative susceptibility of NE-183 apple cultivars to fruit rot pathogens in West Virginia. J Am Pomool Soc 55:72–77Google Scholar
  13. Biggs AR, Rosenberger DA, Yoder KS, Kiyomoto RK, Cooley DR, Sutton TB (2009) Relative susceptibility of selected apple cultivars to cedar apple rust and quince rust. Plant Health Progress. doi: 10.1094/PHP-2009-1014-01-RS Google Scholar
  14. Blanke MM, Burdick B (2005) Food (miles) for thought. Environ Sci Pollut Res 12(3):125–127Google Scholar
  15. Brooks HJ, Barton DW (1977) A plan for national fruit and nut germplasm repositories. HortScience 12:298–300Google Scholar
  16. Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049PubMedGoogle Scholar
  17. Calvin L, Martin P (2013) USDA economic research service-labor-intensive US fruit and vegetable industry competes in a global market.
  18. Campoy JA, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global context: a review. Sci Hortic 130:357–372Google Scholar
  19. Canals LM, Cowell SJ, Sim S, Basson L (2007) Comparing domestic versus imported apples: a focus on energy use. Environ Sci Pollut Res 14(5):338–344Google Scholar
  20. Celton JM, Martinez S, Jammes M-J, Bechti A, Salvi S, Lergave J-M, Costes E (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytol 192:378–392PubMedGoogle Scholar
  21. Chen X-K, Zhang JY, Zhang Z, Du X-L, Du B-B, Qu S-C (2012) Overexpression MhNPR1 in transgenic Fuji apples enhances resistance to apple powdery mildew. Mol Biol Rep 3:8083–8089Google Scholar
  22. Cornell University (2013) Network for environment and weather applications.
  23. Cornille A, Gladieux P, Smulders MJM, Roldán-Ruiz I, Laurens F, Le Cam B, Nersesyan A, Clavel J, Olonova M, Feugey L, Gabrielyan I, Zhang X-G, Tenaillon MI, Giraud T (2012) New insight into the history of domesticated apple: secondary contribution of the European wild apple to the genome of cultivated varieties. PLoS Genet 8(5):e1002703PubMedCentralPubMedGoogle Scholar
  24. Dempewolf H, Eastwood RJ, Guarino L, Koury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Systems 38:369–377Google Scholar
  25. Denis MC, Furtos A, Dudonné S, Montoudis A, Garofalo C, Desjardins Y et al (2013) Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. PLoS ONE 8(1):e53725PubMedCentralPubMedGoogle Scholar
  26. Dickson EE (1995) Systematic studies of Malus section Chloromeles (Maloideae, Rosaceae). Ithaca, Cornell UniversityGoogle Scholar
  27. Dickson EE, Kresovich S, Weeden NF (1991) Isozymes in North American Malus (Rosaceae): hybridization and species differentiation. Syst Bot 16:363–375Google Scholar
  28. Dunemann F, Schuster M (2009) Genetic characterization and mapping of the major powdery mildew resistance gene Plbj from Malus baccata jackii. Acta Hortic 814:791–797Google Scholar
  29. Dutot M, Nelson LM, Tyson RC (2013) Predicting the spread of postharvest disease in stored fruit, with application to apples. Postharvest Biol Technol 85:45–56Google Scholar
  30. Dzhangaliev AD (2003) The wild apple tree of Kazakhstan. Hortic Rev 29:63–303Google Scholar
  31. Economic Research Service (2012) U.S. apple statistics. 9 Dec 2013.
  32. Espley R, Martens S (2013) Health properties of apple and pear. In: Skinner EM, Hunter D (eds) Bioactives in fruit: health benefits and functional foods. Wiley, Oxford. doi: 10.1002/9781118635551.ch5 Google Scholar
  33. European Cooperative Programme for Plant Genetic Resources (2013) 6 Feb 2014
  34. Evans K (2013) Apple breeding in the Pacific Northwest. Acta Hortic 976:75–78Google Scholar
  35. Evans K, Luby J, Brown S, Clark M, Guan Y, Orcheski B, Schmitz C, Peace C, van de Weg E, Iezzoni A (2012) Large-scale standardized phenotyping of apple in RosBREED. Acta Hortic 945:233–238Google Scholar
  36. Fazio G, Aldwinckle HS, Volk GM, Richards CM, Janisiewicz WJ, Forsline PL (2009) Progress in evaluating Malus sieversii for disease resistance and horticultural traits. Acta Hortic 814:59–66Google Scholar
  37. Fazio G, Kviklys D, Grusak MA, Robinson TL (2012) Soil pH, soil type and replant disease affect growth and nutrient absorption in apple rootstocks. N Y Fruit Q 20:22–28Google Scholar
  38. Fazio G, Kviklys D, Grusak MA, Robinson TL (2013) Phenotypic diversity and QTL mapping of absorption and translocation of nutrients by apple rootstocks. Asp Appl Biol 119:37–50Google Scholar
  39. Fazio G, Wan Y, Kviklys D, Romero L, Adams R, Strickland D, Robinson T (2014) Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. J Am Soc Hortic Sci 139:87–98Google Scholar
  40. Fiala JL (1994) Flowering crabapples. Timber Press, PortlandGoogle Scholar
  41. Fischer M, Fischer C (1999) Evaluation of Malus species and cultivars and the fruit genebank Dresden-Pillnitz and its use for apple resistance breeding. Genet Resour Crop Evol 46:235–241Google Scholar
  42. Flachowsky H, Le Roux P-M, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377PubMedGoogle Scholar
  43. Food and Agriculture Organization of the United Nations (2009) International treaty on plant genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  44. Food and Agriculture Organization of the United Nations (2012) State of the world’s forests. FAO, RomeGoogle Scholar
  45. Food and Agriculture Organization of the United Nations (2013) FAOSTAT 16 Nov 2013.
  46. Food and Agriculture Organization of the United Nations (2014) World information and early warning system on PGRFA. 5 June 2014.
  47. Foreign Agricultural Service (2013) Organics: world markets and trade. USDA-FAS.
  48. Forsline PL (1996) Core subsets in the USDA/NPGS with apple as an example. In: Proceedings of the 2nd workshop on clonal genetic resources, Ottawa, Ont. Canada, Jan 23–24 1996, pp 172–175Google Scholar
  49. Forsline PL, Aldwinckle HS (2002) Natural occurrence of fire blight in USDA apple collection after 10 years of observation. The 9th international workshop on fire blight, New Zealand. Acta Hortic 590:351–357Google Scholar
  50. Forsline PL, Aldwinckle HS (2004) Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Acta Hortic 663:529–534Google Scholar
  51. Forsline PL, Stushnoff C, Towill LE, Waddell JW, Lamboy WF, McFerson JR (1998) Recovery and longevity of cryopreserved apple buds. J Am Soc Hortic Sci 123:365–370Google Scholar
  52. Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization and utilization of wild apples of Central Asia. Hortic Rev 29:1–61Google Scholar
  53. Furnari C (2013) Craft cider gaining momentum 6 May 2013.
  54. Gardner KM, Schwaninger H, Cann S, Baldo A, Chao T, Fazio G, Volk G, Richards C, Zhong G-Y, Myles S (2013) Genome-wide survey of genetic diversity in apple using genotyping-by-sequencing. Plant and Animal Genome XXI, 12–16, Jan, 2013. San Diego, CA (Abstract #W248)Google Scholar
  55. Gottschalk C, van Nocker S (2013) Diversity in seasonal bloom time and floral development among apple species and hybrids. J Am Soc Hortic Sci 138(5):367–374Google Scholar
  56. Grab S, Craparo A (2011) Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa; 1973–2009. Agric For Meteorol 151:406–413Google Scholar
  57. Gross BL, Henk AD, Forsline PL, Richards CM, Volk GM (2011) Identification of interspecific hybrids among domesticated apple and its wild relatives. Tree Genet Genomes 8:1223–1235Google Scholar
  58. Gross B, Volk GM, Richards CM, Forsline P, Fazio G, Chao CT (2012) Identification of “duplicate” accessions within the USDA-ARS national plant germplasm system Malus collection. J Am Soc Hortic Sci 137:333–342Google Scholar
  59. Gross BL, Volk GM, Richards CM, Reeves PA, Henk AD, Forsline PL, Szewc-McFadden A, Fazio G, Chao CT (2013) Diversity captured in the USDA-ARS national plant germplasm system apple core collection. J Am Soc Hortic Sci 138:375–381Google Scholar
  60. Gu YH, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72Google Scholar
  61. Hanke MV, Flachowsky H, Hoenicka H, Fladung M (2012) Functional genomics of flowering time in trees. In: Schnell RJ, Priyadarshan PM (eds) Genomics of tree crops. Springer, New York, pp 39–69Google Scholar
  62. Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430PubMedGoogle Scholar
  63. Hegedus A (2006) Review of the self-incompatibility in apple (Malus × domestica Borkh., syn.: Malus pumila Mill.). Int J Hortic Sci 12(2):31–36Google Scholar
  64. Hokanson SC, McFerson JR, Forsline PL, Lamboy WF, Luby JJ, Djangaliev AD, Aldwinckle HS (1997) Collecting and managing wild Malus germplasm in its center of diversity. HortScience 32:173–176Google Scholar
  65. Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683Google Scholar
  66. Hokanson SC, Lamboy WF, Szewc-McFadden AK, McFerson JR (2001) Microsatellite (SSR) variation in a collection of Malus (apple) species and hybrids. Euphytica 118:281–294Google Scholar
  67. Holb IJ (2009) Fungal disease management in environmentally friendly apple production—a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Netherlands, pp 219–292Google Scholar
  68. Howitt AH (1993) Common tree fruit pests. Michigan State University Extension, NCR 63Google Scholar
  69. Hyson DA (2011) A comprehensive review of apples and apple components and their relationship to human health. Adv Nutr 2(5):408–420PubMedCentralPubMedGoogle Scholar
  70. Iezzoni A, Luby J, Yue C, van de Weg E, Fazio G, Main D, Bassil N, Weebadde C, McFerson J, Peace C (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389–394Google Scholar
  71. Isutsa DK, Merwin IA (2000) Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortScience 35:262–268Google Scholar
  72. IUCN (2013) IUCN red list of threatened species. Version 2013.1. 09 November 2013.
  73. Janick J (2002) History of the Pri apple breeding program. Acta Hortic 595:55–60Google Scholar
  74. Janisiewicz W, Saftner R, Conway W, Forsline P (2008) Preliminary evaluation of apple germplasm from Kazakhstan for resistance to blue mold decay caused by Penicillium expansum after harvest. HortScience 43:420–426Google Scholar
  75. Jenderek MM, Forsline PL, Postman J, Stover E, Ellis D (2011) Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in liquid nitrogen vapors. HortScience 46:1230–1234Google Scholar
  76. Jenni K, Graves D, Hardiman J, Hatten J, Mastin M, Mesa M, Montag J, Nieman T, Voss F, Maule A (2013) Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA. Clim Change 1–14Google Scholar
  77. Jones AL, Aldwinckle HS (1990) Compendium of apple and pear diseases. APS Press, St. Paul MN, Disease Compendium SeriesGoogle Scholar
  78. Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I, Ru S, Evans K, Peace C, Abbott AG, Mueller LA, Olmstead MA, Main D (2014) The Genome Database for Rosaceae (GDR): year 10 update. Nucl Acids Res 42(D1):D1237–D1244PubMedCentralPubMedGoogle Scholar
  79. Juniper BE, Mabberley DJ (2006) The story of the apple. Timber Press, PortlandGoogle Scholar
  80. Jurick WM, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL et al (2011) Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breeding 130(4):481–486Google Scholar
  81. Jurick WM, Kou L, Gaskins V, Luo Y (2013) First report of Alternaria alternata causing postharvest decay on apple fruit during cold storage in Pennsylvania. Plant Dis. doi: 10.1094/PDIS-07-13-0802-PDN
  82. Khoury CK, Greene S, Wiersema J, Maxted N, Jarvis A, Struik PC (2013) An inventory of crop wild relatives of the United States. Crop Sci 53:1496–1508Google Scholar
  83. Klett J, Cox R (2008) Flowering crabapple trees. Colorado State University Extension no. 7.424Google Scholar
  84. Kou L, Gaskins V, Luo Y, Jurick II WM (2013) First report of Colletotrichum fioriniae causing postharvest decay on ‘Nittany’ apple fruit in the United States. Plant Dis. doi: 10.1094/PDIS-08-13-0816-PDN
  85. Kukull WA (2012) An apple a day to preent Parkinson disease: reduction of risk by flavonoids. Neurology 78:1112–1113PubMedGoogle Scholar
  86. Kumar S, Volz RK, Alspach PA, Bus VGM (2010) Development of a recurrent apple breeding programme in New Zealand: a synthesis of results, and a proposed revised breeding strategy. Euphytica 173:207–222Google Scholar
  87. Kumar S, Bink MCAM, Volz RK, Bus VGM, Chagne D (2012a) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: prospects, challenges and strategies. Tree Genet Genomes 8:1–14Google Scholar
  88. Kumar S, Chagne D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012b) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLOS One 7:e36674Google Scholar
  89. Labuschagné I, Louw B, Schmidt K, Sadie A (2002a) Genotypic variation in prolonged dormancy symptoms in apple progenies. HortScience 37(1):157–163Google Scholar
  90. Labuschagné IF, Louw JH, Schmidt K, Sadie A (2002b) Genetic variation in chilling requirement in apple progeny. J Am Soc Hortic Sci 127(4):663–672Google Scholar
  91. Labuschagné IF, Louw JH, Schmidt K, Sadie A (2003) Selection for increased budbreak in apple. J Am Soc Hortic Sci 128(3):363–373Google Scholar
  92. Lamboy WF, Yu J, Forsline PL, Weeden NF (1996) Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Am Soc Hortic Sci 121:982–987Google Scholar
  93. Le Roux P-M, Flachowsky H, Hanke M-V, Gassler C, Patocchi A (2012) Use of a transgenic early flowering approach in apple (Malus × domestica Borkh.) to introgress fire blight resistance from cultivar Everste. Mol Breeding 30:857–874Google Scholar
  94. Leskey TC, Hamilton GC, Nielsen AL, Polk DF, Rodriguez-Saona C, Bergh JC, Herbert DA, Kuhar TP, Pfeiffer D, Dively G, Hooks CRR, Raupp MJ, Shrewsbury PM, Krawczyk G, Shearer PW, Whalen J, Koplinka-Loehr C, Myers E, Inkley D, Hoelmer KA, Lee D-Y, Wright SE (2012) Pest status of the brown marmorated stink bug, Halyomorpha halys (Stål), in the USA. Outlooks on Pest Manag 23:218–226Google Scholar
  95. Li Y, Zhang L, Zhang Z, Cong P, Cheng ZM (2011) A simple sequence repeat marker linked to the susceptibility of apple to Alternaria blotch caused by Alternaria alternata apple pathotype. J Am Soc Hortic Sci 136(2):109–115Google Scholar
  96. Li TZ, Long SS, Li MF, Bai SL, Zhang W (2012a) Determination of S-genotypes and identification of five novel S-RNase alleles in wild Malus species. Plant Mol Biol Rep 30:453–461Google Scholar
  97. Li Y, Hirst PM, Wan Y, Liu Y, Zhou Q, Gao H et al (2012b) Resistance to Marssonina coronaria and Alternaria alternata apple pathotype in the major apple cultivars and rootstocks used in China. HortScience 47(9):1241–1244Google Scholar
  98. Li Y, Aldwinckle HS, Sutton T, Tsuge T, Kang G, Cong PH, Cheng ZM (2013) Interactions of apple and the Alternaria alternata apple pathotype. Crit Rev Plant Sci 32(3):141–150Google Scholar
  99. Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121PubMedGoogle Scholar
  100. Luby J, Hoover E, Peterson M, Larson D, Bedford D (1999) Cold hardiness in the USDA Malus core germplasm collection. Acta Hortic 484:109–114Google Scholar
  101. Luby J, Forsline PL, Aldwinckle HS, Bus V, Geibel M (2001) Silk road apples—collection, evaluation, and utilization of Malus sieversii from Central Asia. HortScience 36:225–231Google Scholar
  102. Luby JJ, Alspach PA, Bus VGM, Oraguzie NC (2002) Field resistance to fire blight in a diverse apple (Malus sp.) germplasm collection. J Am Soc Hortic Sci 127:245–253Google Scholar
  103. Luby J, Hokanson SK, Forsline P, Aldwinckle H, Gardiner S, Bus V (2006) Evaluation of horticulturally elite Malus sieversii germplasm for apple scab resistance genes using phenotypic and marker-based screenings. In: 3rd international rosaceae genomics conference, p 75Google Scholar
  104. Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE 6(5):20155Google Scholar
  105. Mac an tSaoir S, Mansfield J, Cross G, Harun R (2011) The effect of planting density of ‘Bramley’s seedling’ apple on MM.111/M.9 rootstocks with an M.9 control in sites suffering from apple replant disease. Acta Hortic 903:647–650Google Scholar
  106. MacHardy WE (1996) Apple scab: biology, epidemiology, and management. APS Press, St. Paul MN 545 ppGoogle Scholar
  107. Martins CR, Hoffmann A, Rombaldi CV, Farias RDM, Teodoro AV (2013) Apple biological and physiological disorders in the orchard and in postharvest according to production system. Revista Brasileira de Fruticultura 35(1):1–8Google Scholar
  108. Marίc S, Lukić M, Cerović R, Mitrović M, Bošković R (2010) Application of molecular markers in apple breeding. Genitika 42:359–375Google Scholar
  109. Mazzola M (1998) Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 88:930–938PubMedGoogle Scholar
  110. Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Ann Rev Phytopathol 42:35–59Google Scholar
  111. Mazzola M, Manici LM (2012) Apple replant disease: role of microbial ecology in cause and control. Ann Rev Phytopathol 50:45–65Google Scholar
  112. McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in plant agriculture. Ann Rev Phytopathol 40:443–465Google Scholar
  113. Mehlenbacher SA, Voordeckers AM (1991) Relationship of flowering time, rate of seed germination, and time of leaf budbreak and usefulness in selecting for late- flowering apples. J Am Soc Hortic Sci 116:565–568Google Scholar
  114. Momol MT, Forsline PL, Aldwinckle HS, Lamboy WF (1999) Fire blight resistance and horticultural evaluation of wild Malus populations from Central Asia. Acta Hortic 489:229–234Google Scholar
  115. Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genomes 6:195–203Google Scholar
  116. Moriya S, Terakami S, Iwanami H, Haji T, Okada K, Yamamoto T, Abe K (2011) Genetic mapping and marker-assisted selection of the gene conferring susceptibility to Alternaria blotch caused by Alternaria alternate apple pathotype in apple. Acta Hortic 976:555–560Google Scholar
  117. Myers CT, Leskey TC, Forsline PL (2008) Susceptibility of fruit from diverse apple and crabapple germplasm to attack from plum curculio (Coleoptera: Curculionidae). J Econ Entomol 101:206–215PubMedGoogle Scholar
  118. Nikiforova SV, Cavalieri D, Velasco R, Goremykin V (2013) Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Mol Biol Evol 30(8):1751–1760PubMedGoogle Scholar
  119. Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hortic Sci 121:773–782Google Scholar
  120. Norelli JL (2013) Genetic analysis of Malus sieversii PI613981 for resistance to postharvest apple fruit decay caused by Penicillium expansum (blue mold). Plant and animal genome XXI conference (Abstr.)Google Scholar
  121. Norelli JL, Lalli DA, Bassett CL, Wisniewski ME, Gardiner SE, Celton JM, Bowatte DR, Carlisle CM, Malnoy M, Aldwinckle HS, Farrell RE Jr, Baldo AM, Horner MB, Bus VGM (2009) Using functional genomics to identify molecular markers for fire blight resistance (Erwinia amylovora) in apples (Malus). Acta Hortic 839:415–420Google Scholar
  122. Norelli JL, Lalli DA, Bassett CL, Wisniewski ME, Gardiner SE, Celton JM, Bowatte DR, Carlisle CM, Malnoy M, Aldwinckle HS, Farrell RL Jr, Horner MB, Bus VGM, Baldo AM, Fazio G (2011) Molecular markers for durable fire blight resistance in apple. Acta Hortic 903:81–85Google Scholar
  123. Othman KI, Ab Karim MS, Karim R, Adzhan NM, Halim NA (2013) Consumption pattern on fruits and vegetables among adults: a case of Malaysia. Acad J Interdiscip Stud 2(8):424Google Scholar
  124. Peace C, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosaceae, plant genetics and genomics: crops and models 6. Springer, New York, pp 19–53Google Scholar
  125. Pollan M (2001) The botany of desire: a plant’s-eye view of the world. Random House, New YorkGoogle Scholar
  126. Richards CM, Volk GM, Reeves PA, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2009a) Selection of stratified core sets representing wild apple (Malus sieversii). J Am Soc Hortic Sci 134:228–235Google Scholar
  127. Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood D, Reeves PA, Forsline PL (2009b) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339–347Google Scholar
  128. Romer JP, Iles JK, Haynes CL (2003) Selection preferences for crabapple cultivars and species. HortTechnology 13:522–526Google Scholar
  129. Rosenberger DA (1997) Recent research and changing options for controlling postharvest decays of apples. In: Proceedings of harvesting, handling, and storage workshop, Northeast Regional Agricultural Engineering Service Publication NRAES-112. v. 14Google Scholar
  130. Routson KJ, Volk GM, Richards CM, Smith SE, Nabhan GP, De Echeverria VW (2012) Genetic variation and distribution of Pacific crabapple, Malus fusca, (Raf.) C.K. Schneid. J Am Soc Hortic Sci 137:325–332Google Scholar
  131. Rumberger A, Merwin IA, Thies JE (2007) Microbial community development in the rhizosphere of apple trees at a replant disease site. Soil Biol Biochem 39:1645–1654Google Scholar
  132. Rupasinghe HPV, Huber GM, Embree C, Forsline PL (2010) Red-fleshed apple as a source for functional beverages. Can J Plant Sci 90:95–100Google Scholar
  133. Saito K, Taked K (1984) Genetic analysis of resistance to Alternaria blotch (Alternaria mali Roberts) in apple. (Studies on the breeding of the apple). Jap J Breed 34(2):197–209Google Scholar
  134. Schmitz CA, Clark MD, Luby JJ, Bradeen JM, Guan YZ, Evans K, Orcheski B, Brown S, Verma S, Peace C (2013) Fruit texture phenotypes of the RosBREED U.S. apple reference germplasm set. HortScience 48:296–303Google Scholar
  135. Seemüller E, Schneider B (2004) ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 43:1217–1226Google Scholar
  136. Seufferheld MJ, Stushnoff C, Forsline PL, Gonzalez GHT (1999) Cryopreservation of cold-tender apple germplasm. J Am Soc Hortic Sci 124:612–618Google Scholar
  137. Shi X, Wang X, Peng F, Zhao Y (2012) Molecular cloning and characterization of a nonsymbiotic hemoglobin gene (GLB1) from Malus hupehensis Rehd. with heterologous expression in tomato. Mol Biol Rep 39:8075–8082PubMedGoogle Scholar
  138. St. Laurent A, Merwin IA, Fazio G, Thies JE, Brown MG (2010) Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant Soil 337:259–272Google Scholar
  139. Sun L, Bukovac MJ, Forsline PL, van Nocker S (2009) Natural variation in fruit abscission-related traits in apples (Malus). Euphytica 165:55–67Google Scholar
  140. Sutton TB, Aldwinckle HS, Agnello AM, Walgenbach JF (2013) Compendium of apple and pear diseases and pests. American Phytopathological Society, Saint PaulGoogle Scholar
  141. Thompson AK (2010) Controlled atmosphere storage of fruits and vegetables. CAB International, CambridgeGoogle Scholar
  142. Troggio M, Gleave A, Salvi S, Chagne D, Cestaro A, Kumar S, Crowhurst RN, Gardiner SE (2012) Apple, from genome to breeding. Tree Genet Genomes 8:509–529Google Scholar
  143. U.S. Apple Association (2013). 12 Dec 2013
  144. U.S. International Trade Commission (2010) Apples. United States International Trade Commission, Washington D.C, Industry and trade summary, p 20436Google Scholar
  145. USDA (2014) National genetic resources program. Germplasm resources information network (GRIN). USDA, ARS Natl. Germplasm Resources Laboratory, Beltsville, Md. 6 Feb 2014
  146. USDA Economic Research Service (2013) 12 Dec 2013
  147. USDA National Agricultural Statistics Service (2014) 16 June 2014
  148. Van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. APS Press, St. Paul 460 ppGoogle Scholar
  149. Van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502Google Scholar
  150. Van Nocker S, Berry G, Najdowski J, Michelutti R, Luffman M, Forsline P, Alsmairat N, Beaudry R, Nair MG, Ordidge M (2011) Genetic diversity of red-fleshed apples (Malus). Euphytica 185:281–293Google Scholar
  151. Van Passel S (2013) Food miles to assess sustainability: a revision. Sustain Dev 21(1):1–17Google Scholar
  152. Vanneste JL, Cornish DA, Yu J, Voyle MD (2000) A microcin produced by a strain of Erwinia herbicola is involved in biological control of fire blight and soft rot caused by Erwinia sp. Acta Hortic 513:39–46Google Scholar
  153. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839PubMedGoogle Scholar
  154. Vincent H, Wiersema J, Kell S, Fielder H, Dobbie S, Castañeda-Álvarez NP, Guarino L, Eastwood R, León B, Maxted N (2013) A prioritized crop wild relative inventory to help underpin global food security. Biol Conserv 167:265–275Google Scholar
  155. Volk GM, Henk AD, Baldo A, Fazio G, Chao CT, Richards CM. Chloroplast DNA phylogeny and phylogeography within the genus Malus. Am J Bot (submitted)Google Scholar
  156. Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210Google Scholar
  157. Volk GM, Richards CM, Reilley AA, Henk AD, Reeves PA, Forsline PL, Aldwinckle HS (2008a) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and Southern Russia. J Am Soc Hortic Sci 133:383–389Google Scholar
  158. Volk GM, Waddell J, Bonnart R, Towill L, Ellis D, Luffman M (2008b) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. CryoLetters 29:89–94PubMedGoogle Scholar
  159. Volk GM, Richards CM, Henk AD, Reilley AA, Miller DD, Forsline PL (2009a) Novel diversity identified in a wild apple population from the Kyrgyz Republic. HortScience 44:516–519Google Scholar
  160. Volk GM, Richards CM, Henk A, Reilley AA, Reeves PA, Forsline PL, Aldwinkle HS (2009b) Capturing the diversity of wild Malus orientalis from Georgia, Armenia, Russia and Turkey. J Am Soc Hortic Sci 134:453–459Google Scholar
  161. Walters C, Volk GM, Stanwood PS, Towill LE, Forsline PL, Koster KL (2011) Long-term survival of cryopreserved germplasm: contributing factors and assessments from thirty year old experiments. Acta Hortic 908:113–120Google Scholar
  162. Wan Y, Li D, Zhao Z, Mei L, Han M, Schwaninger H, Fazio G (2011) The distribution of wild apple germplasm in northwest China and its potential application for apple rootstock breeding. Acta Hortic 903:123–141Google Scholar
  163. Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi M, Kasai A, Li TZ, Harada T (2009) Null mutation of the MdACS 3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol 151:391–399PubMedCentralPubMedGoogle Scholar
  164. Way RD (1976) The largest apple variety collection in the United States. N Y Food Life Sci 9:11–13Google Scholar
  165. Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1990) Apples (Malus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops, vol 290. Acta Hortic, pp 3–62Google Scholar
  166. Weatherspoon D, Oehmke J, Dembélé A, Coleman M, Satimanon T, Weatherspoon L (2013) Price and expenditure elasticities for fresh fruits in an urban food desert. Urban Stud 50(1):88–106Google Scholar
  167. Wolfgang J, Angelini E, Eveillard S, Malembic-Maher S (2013) Management of European fruit tree and grapevine phytoplasma diseases through genetic resistance. Phytopathogenic Mollicutes 3(1):16–24Google Scholar
  168. Xu K, Wang A, Brown S (2011) Genetic characterization of the Ma locus with pH and titratable acidity in apple. Molecular Breed. pp 1–14. doi: 10.1007/s11032-011-9674-7
  169. Yang W, Liu X-D, Chi X-J, Wu C-A, Li Y-Z, Song L-L, Liu X-M, Wang Y-F, Wang F-W, Zhang C, Liu Y, Zong J-M, Li H-Y (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229PubMedGoogle Scholar
  170. Yao SR, Merwin IA, Abawi GS, Thies JE (2006) Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth or yield in an apple replant site. Soil Biol Biochem 38:587–599Google Scholar
  171. Yu TC (1979) Pome fruits. 1. Malus. In: Kuo C-K, Shu K, Hsueh FL, Chang TP, Lei JK (eds) Taxonomy of fruit trees in China. Guoj Shudian, Beijing, pp 87–122Google Scholar
  172. Yue C, Gallardo RK, Luby J, Rihn A, McFerson JR, McCracken V, Bedford D, Brown S, Evans K, Weebadde C, Sebolt A, Iezzoni AF (2013) An investigation of U.S. apple producers’ trait prioritization—evidence from audience surveys. HortScience 48:1378–1384Google Scholar
  173. Zhang J-W, Qu S-C, Du X-L, Qiao Y-S, Cai B-H, Guo Z-R, Zhang Z (2012a) Overexpression of the Malus hupehensis MhTGA2 gene, a novel bZIP transcription factor for increased tolerance to salt and osmotic stress in transgenic tobacco. Int J Plant Sci 173:441–453Google Scholar
  174. Zhang J-Y, Guo Z-R, Qu S-C, Zhang Z (2012b) Identification and molecular characterization of a Class I chitinase gene (Mhchit1) from Malus hupehensis. Plant Mol Biol Rep 30:760–767Google Scholar
  175. Zhi-Qin Z (1999) The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilization. Genet Res Crop Evol 46:599–609Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2014

Authors and Affiliations

  • Gayle M. Volk
    • 1
  • C. Thomas Chao
    • 2
  • Jay Norelli
    • 3
  • Susan K. Brown
    • 4
  • Gennaro Fazio
    • 2
  • Cameron Peace
    • 5
  • Jim McFerson
    • 6
  • Gan-Yuan Zhong
    • 2
  • Peter Bretting
    • 7
  1. 1.USDA-ARS National Center for Genetic Resources PreservationFort CollinsUSA
  2. 2.USDA-ARS Plant Genetic Resources UnitGenevaUSA
  3. 3.USDA-ARS Appalachian Fruit Research LaboratoryKearneysvilleUSA
  4. 4.Department of HorticultureNew York State Agricultural Experiment StationGenevaUSA
  5. 5.Department of HorticultureWashington State UniversityPullmanUSA
  6. 6.Washington Tree Fruit Research CommissionWenatcheeUSA
  7. 7.USDA-ARS, George Washington Carver CenterBeltsvilleUSA

Personalised recommendations