Genetic Resources and Crop Evolution

, Volume 62, Issue 3, pp 335–347 | Cite as

Diversity of Oxalis tuberosa Molina: a comparison between AFLP and microsatellite markers

  • Lauren J. MoscoeEmail author
  • Eve Emshwiller
Research Article


Traditional crops contribute to food security and agroecological sustainability, but their diversity is increasingly threatened by complex interplays of local and global sociocultural and economic change. Molecular markers are powerful tools to measure and characterize this diversity, and comparisons among different molecular marker systems are necessary to assess their appropriateness in different research contexts. Using a common sample set, we compare amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeats; SSRs) techniques to assess their utility in research on the Andean tuber crop oca (Oxalis tuberosa Molina, Oxalidaceae). We find that 26 of 27 individuals have distinct AFLP genotypes, and all 27 individuals have distinct SSR genotypes. Both markers systems cluster samples in agreement with morphotype groups and separate clusters with similar strength, but more variation occurs within AFLP-based clusters than within SSR-based clusters. In addition, correlation between marker systems of pairwise distances is positive and significant (R = 0.831, p = 0.001). Ultimately, we discuss each system’s advantages and disadvantages for future oca diversity research.


Agricultural biodiversity Andean crops Clonal propagation Molecular markers Oxalis tuberosa 



The authors would like to thank Cécile Ané, Bret Larget, and Rebecca Shirk (UW-Madison) for help with statistical analyses and Sarah Friedrich for help with figures. EE thanks the people and community authorities of the Communities Amaru, Sacaca, and Viacha; INRENA for collection permits for Peru in 1996–1997; and funding from a Student Fulbright Research Grant, and National Science Foundation (USA) Doctoral Dissertation Improvement Grant #DEB9623227 to Jeff J. Doyle and EE.


  1. Alacs EA, Spencer PBS, Tores PJ, Krauss SL (2010) Population genetic structure of island and mainland populations of the quokka, Setonix brachyurus (Macropodidae): a comparison of AFLP and microsatellite markers. Conserv Genet 12:297–309CrossRefGoogle Scholar
  2. Albertini E, Porceddu A, Marconi G, Barcaccia G, Pallottini L, Falcinelli M (2003) Microsatellite-AFLP for genetic mapping of complex polyploids. Genome 46:824–832CrossRefPubMedGoogle Scholar
  3. Archak S, Gaikwad AB, Gautam D, Rao EVVB, Swamy KRM, Karihaloo JL (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46:362–369CrossRefPubMedGoogle Scholar
  4. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139CrossRefPubMedGoogle Scholar
  5. Bonnave M, Bleeckx G, Rojas Beltrán J, Maughan P, Flamand MC, Terrazas F, Bertin P (2014) Farmers’ unconscious incorporation of sexually-produced genotypes into the germplasm of a vegetatively-propagated crop (Oxalis tuberosa Mol.). Genet Resour Crop Evol 61:721–740CrossRefGoogle Scholar
  6. Bradbury, EJ (2014) Understanding toxic domesticates: biochemistry and population genetics of manioc (Manihot esculenta) and oca (Oxalis tuberosa). Ph.D. Dissertation, University of Wisconsin-MadisonGoogle Scholar
  7. Bradbury EJ, Emshwiller E (2011) The role of organic acids in the domestication of Oxalis tuberosa: a new model for studying domestication resulting in opposing crop phenotypes. Econ Bot 65:76–84CrossRefGoogle Scholar
  8. Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991CrossRefPubMedGoogle Scholar
  9. de Jesus ON, de Oliveira e Silva S, Amorim EP, Ferreira CF, de Campos JMS, de Gaspari Silva G, Figueira A (2013) Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC Plant Biol 13:41CrossRefPubMedCentralPubMedGoogle Scholar
  10. Dyer AT, Leonard KJ (2000) Contamination, error, and nonspecific molecular tools. Phytopathology 90:565–567CrossRefPubMedGoogle Scholar
  11. Elias M, Mühlen GS, McKey D, Roa AC, Tohme J (2004) Genetic diversity of traditional South American landraces of manioc (Manihot esculenta Crantz): an analysis using microsatellites. Econ Bot 58:242–256CrossRefGoogle Scholar
  12. Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet 16:551–558CrossRefPubMedGoogle Scholar
  13. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CrossRefPubMedGoogle Scholar
  14. Emanuelli F, Lorenzi S, Grzeskowiak L et al (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:1CrossRefGoogle Scholar
  15. Emshwiller E (2002) Ploidy levels among species of the “Oxalis tuberosa alliance” as inferred by flow cytometry. Ann Bot 89(6):741–753CrossRefPubMedCentralPubMedGoogle Scholar
  16. Emshwiller E (2006) Evolution and conservation of clonally propagated crops. In: Motley J, Zerega N, Cross HB (eds) Darwin’s harvest: new approaches to the origins, evolution, and conservation of crops. Columbia University Press, New York, pp 308–332Google Scholar
  17. Emshwiller E, Theim T, Grau A, Nina V, Terrazas F (2009) Origins of domestication and polyploidy in oca (Oxalis tuberosa; Oxalidaceae). 3. AFLP data of oca and four wild, tuber-bearing taxa. Am J Bot 96:1839–1848CrossRefPubMedGoogle Scholar
  18. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:474–491Google Scholar
  19. Gavrilenko T, Antonova O, Shuvalova A, Krylova E, Alpatyeva N, Spooner DM, Novikova L (2013) Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genet Resour Crop Evol 60:1997–2015CrossRefGoogle Scholar
  20. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Google Scholar
  21. Guaraguara KJ (2013) Establecimiento de un kit de microsatelites en oca (Oxalis tuberosa Molina) para estudios de diversidad genética. M. Sc. Thesis. Universidad Mayor de San Simón, Cochabamba, Bolivia, 133 pGoogle Scholar
  22. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611CrossRefPubMedGoogle Scholar
  23. Hermann M (1992) Raíces y tubérculos andinos: prioridades de investigación para un recurso alimentario pospuesto. International Potato Center, LimaGoogle Scholar
  24. Jarvis DI, Padoch C, Cooper HD (2007) Biodiversity, agriculture, and ecosystem services. In: Jarvis DI, Padoch C, Cooper HD (eds) Managing biodiversity in agricultural ecosystems. Bioversity International, New York, pp 1–12Google Scholar
  25. Jarvis DI, Brown ADH, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T et al (2008) A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities. Proc Natl Acad Sci 105:5326–5331CrossRefPubMedCentralPubMedGoogle Scholar
  26. Johns T (2003) Plant biodiversity and malnutrition: simple solutions to complex problems. Afr J Food Agric Nutr Dev 3:45–52Google Scholar
  27. Kardolus JP, van Eck HJ, van den Berg RG (1998) The potential of AFLPs in biosystematics: a first application in Solanum taxonomy (Solanaceae). Plant Syst Evol 210:87–103CrossRefGoogle Scholar
  28. Kuchma O, Vornam B, Finkeldey R (2011) Mutation rates in Scots pine (Pinus sylvestris L.) from the chernobyl exclusion zone evaluated with amplified fragment-length polymorphisms (AFLPs) and microsatellite markers. Mutat Res 725:29–35CrossRefPubMedGoogle Scholar
  29. Malice M, Martin N, Pissard A, Rojas-Beltran JA, Gandarillas A, Bertin P, Baudoin JP (2007) A preliminary study of the genetic diversity of Bolivian oca (Oxalis tuberosa Mol.) varieties maintained in situ and ex situ through the utilization of ISSR molecular markers. Genet Resour Crop Evol 54:685–690CrossRefGoogle Scholar
  30. Malice M, Bizoux JP, Blas R, Baudoin JP (2010) Genetic diversity of Andean tuber crop species in the in situ microcenter of Huanuco, Peru. Crop Sci 50:1915–1923CrossRefGoogle Scholar
  31. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  32. Mariette S, Chagné D, Lézier C, Pastuszka P, Raffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479CrossRefPubMedGoogle Scholar
  33. Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol Ecol 11:1145–1156CrossRefPubMedGoogle Scholar
  34. Mkumbira J, Chiwona-Karltun L, Lagercrantz U, Mahungu NM, Saka J, Mhone A et al (2003) Classification of manioc into ‘bitter’ and ‘cool’ in Malawi: from farmers’ perception to characterisation by molecular markers. Euphytica 132:7–22CrossRefGoogle Scholar
  35. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  36. Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255CrossRefGoogle Scholar
  37. Pfeiffer T, Roschanski AM, Pannell JR, Korbecka G, Schnittler M (2011) Characterization of microsatellite loci and reliable genotyping in a polyploid plant, Mercurialis perennis (Euphorbiaceae). J Hered 102:479–488CrossRefPubMedGoogle Scholar
  38. Pissard A, Ghislain M, Bertin P (2006) Genetic diversity of the Andean tuber-bearing species, oca (Oxalis tuberosa Mol.), investigated by inter-simple sequence repeats. Genome 49:8–16CrossRefPubMedGoogle Scholar
  39. Pissard A, Arbizu C, Ghislain M, Faux AM, Paulet S, Bertin P (2007a) Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol. Genetica 132:71–85CrossRefPubMedGoogle Scholar
  40. Pissard A, Rojas-Beltran JA, Faux A-M, Paulet S, Bertin P (2007b) Evidence of intra-varietal genetic variability in the vegetatively propagated crop oca (Oxalis tuberosa Mol.) in the Andean traditional farming system. Plant Syst Evol 270:59–74CrossRefGoogle Scholar
  41. Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, Powell W, Waugh R (1997) Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722CrossRefGoogle Scholar
  42. Skrede I, Borgen L, Brochmann C (2009) Genetic structuring in three closely related circumpolar plant species: AFLP versus microsatellite markers and high-arctic versus arctic–alpine distributions. Heredity 102:293–302CrossRefPubMedGoogle Scholar
  43. Turumaya AA (2011) Desarrollo de marcadores microsatélites para la caracterización de germoplasma en oca (Oxalis tuberosa Molina). M. Sc. Thesis. Universidad Mayor de San Simón, Cochabamba, Bolivia, p 71Google Scholar
  44. Veasey EA, Borges A, Rosa MS, Queiroz-Silva JR, de Andrade Bressan E, Peroni N (2008) Genetic diversity in Brazilian sweet potato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed with microsatellite markers. Genet Mol Biol 31:725–733CrossRefGoogle Scholar
  45. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414CrossRefPubMedCentralPubMedGoogle Scholar
  46. Zeven AC (1980) Polyploidy and plant domestication: the origin and survival of polyploids in cytotype mixtures. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 385–407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations