Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions

Abstract

This research evaluated the genotypic variation in a diverse set of 233 barley genotypes including 57 landraces in the context of early drought tolerance using polyethylene glycol-(PEG) induced osmotic stress on germinating seeds. The effect of PEG treatment ranged from accelerating to delaying the germination rate. PEG showed inhibitory effects on all seedling traits. Expressions of root and shoot traits recorded under optimum and under PEG-induced drought stress were positively and significantly correlated. Combined analysis of variance over experiments and treatments showed intermediate to high broad sense heritability values ranging from 0.42 to 0.76 for germination rate and seedling traits. Higher heritability values were obtained under optimum conditions as compared to PEG-induced drought stress conditions, indicating that the selection for genotypes with a more vigorous root system would be more efficient under optimum conditions. The extensive genetic variation for root morphology-related traits found in this diverse collection opens the opportunity to further investigate the analyzed root traits as selection criteria to improve barley performance under drought stress and to reveal the genetic basis for the observed stress tolerance by a genome-wide association study.

This is a preview of subscription content, access via your institution.

References

  1. Abdel-Ghani AH (2003) Genetic studies on the outcrossing rate and related floral characteristics in barley (Hordeum vulgare ssp. vulgare and H. v. ssp. spontaneum). PhD thesis, University of Hohenheim, Germany

  2. Abdel-Ghani AH (2009) Response of wheat varieties from semi-arid regions of Jordan to salt stress. J Agron Crop Sci 195:55–65

    Article  Google Scholar 

  3. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating of out crossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595

    PubMed  Article  Google Scholar 

  4. Abdel-Ghani AH, Kumar B, Reyes-Matamoros J, Gonzalez-Portilla PJ, Jansen C, San Martin JP, Lee M, Lübberstedt T (2013) Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica 189:123–133

    CAS  Article  Google Scholar 

  5. Al-Karaki GN (2008) Response of wheat and barley during germination to seed osmopriming at different water potential. J Agron Crop Sci 181:229–235

    Article  Google Scholar 

  6. Al-Karaki G, Al-Ajimi A, Othman Y (2007) Seed germination and early root growth of three barley cultivars as affected by temperature and water stress. Am Eurasian J Agric Environ Sci 2:112–117

    Google Scholar 

  7. Andrew RH, Solanki SS (1966) Comparative root morphology for inbred lines of corn as related to performance. Agron J 58:415–418

    Article  Google Scholar 

  8. Atlin GN, Frey KG (1990) Predicting the relative effectiveness of direct versus indirect selection for oat yield in three types of stress environments. Crop Sci 30:556–561

    Article  Google Scholar 

  9. Baker RJ (1986) Selection indices in plant breeding. CRC Press, Boca Raton

    Google Scholar 

  10. Bálint A, Börner A, Cattivelli L, Dubcovsky J, Galiba G, Szira F, Vágújfalvi A (2008) QTLs and genes for abiotic stress tolerance in cereals: their general role in the environmental adaptation and their developmental-stage specificity. In: Molina-Cano JL, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa JM, Powell W, Royo C, Shewry P, Stanca AM (eds) Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza: CIHEAM/IRTA. Options Méditerranéennes: Série A.SéminairesMéditerranéen s; n. 81, pp 197–200

  11. Barber SA, MacKay AD (1986) Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fert Res 10:217–230

  12. Baum M, Korf VM, Guo P, Lakew B, Hamwieh A, Lababidi S, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney RK,Tuberosa R (eds) Genomics applications in crops. Springer Science + Business Media, The Netherlands, pp 51–79

  13. Belford RK, Klepper B, Rickman RW (1987) Studies of intact shoot-root systems of field-grown winter wheat. II. Root and shoot developmental patterns as related to nitrogen fertilizer. Agron J 79:310–319

    Article  Google Scholar 

  14. Bingham IJ, Bengough AG (2003) Morphological plasticity of wheat and barley roots in response to spatial. Plant Soil 250:273–282

    CAS  Article  Google Scholar 

  15. Brar G, Gomez J, McMichael B, Matches A, Taylor H (1991) Germination of twenty forage legumes as influenced by temperature. Agron J 83:173–175

    Article  Google Scholar 

  16. Ceccarelli S (1996) Adaptation to low/high input cultivation conditions. Euphytica 92:203–214

    Article  Google Scholar 

  17. Ceccarelli S, Grando S, Baum M, Udupa M (2004) Breeding for drought resistance in a changing climate. Crop Sci 32:1–24

    Google Scholar 

  18. Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786

    CAS  PubMed  Article  Google Scholar 

  19. Chloupek O, Dostal V, Streda T, Psota V, Dvorackova O (2013) Drought tolerance of barley varieties in relation to their root system size. Plant Breed 129:630–636

    Article  Google Scholar 

  20. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    CAS  PubMed  Article  Google Scholar 

  21. De Leonardis AM, Petrarulo M, De Vita P, Mastrangelo AM (2012) Genetic and molecular aspects of plant response to drought in annual crop species, advances in selected plant physiology aspects. In: Montanaro G (ed) InTech. ISBN: 978-953-51-0557-2. http://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/genetic-and-molecularaspects-of-plant-response-to-drought-stress

  22. Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12

    Article  Google Scholar 

  23. Eghball B, Maranville JW (1993) Root development and nitrogen influx of corn genotypes grown under combined drought and N stress. Agron J 85:147–152

    CAS  Article  Google Scholar 

  24. El-Beltagy A, Madkour M (2012) Impact of climate change on arid lands agriculture. Agric Food Secur 1:1–12

    Article  Google Scholar 

  25. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  26. FAO statistical year book: World food and agriculture (1997–2011)

  27. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. 1: grain yield response. Aust J Agr Res 29:897–912

    Article  Google Scholar 

  28. Forster B, Ellis R, Moir J, Talame V, Sanguineti M, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy S, Bahri H, El-Ouahabi M, Zoumarou-Wallis N, El- Fellah M, Salem M (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168

    Article  Google Scholar 

  29. Gonzalez A, Martin I, Ayerbe L (2008) Yield and osmotic adjustment capacity of barley under terminal water stress. J Agron Crop Sci 194:81–91

    Article  Google Scholar 

  30. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13

    Article  Google Scholar 

  31. Grando S, Cecceralli C (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86:73–80

    Article  Google Scholar 

  32. Gregory PJ (1994) Root growth and activity. In: Peterson GA (ed) Physiology and determination of crop yield, ASA, CSSA, and SSSA. Madison, WI, pp 65–93

    Google Scholar 

  33. Gregory PJ, Tennant CD, Belford RK (1992) Root and shoot growth, and water and light use efficiency of barley and wheat crops grown on a shallow duplex soil in a Mediterranean-type environment. Aust J Agric Res 43:555–573

    Article  Google Scholar 

  34. Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929

    Article  Google Scholar 

  35. Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  36. Hammer K (1991) Checklists and germplasm collecting. FAO/IBPGR. Plant Genet Resour Newsl 85:15–17

    Google Scholar 

  37. Hammer K (1998a) Agrarbiodiversität und pflanzengenetische Ressourcen. Schriften zu Genetischen Ressourcen 10: 98S

  38. Hammer K (1998b) Genpools—Struktur, Verfügbarkeit und Bearbeitung für die Züchtung. In: Begemann F (ed) Schriften zu Genetischen Ressourcen, vol 8. ZADI, Bonn, pp 4–14

    Google Scholar 

  39. Hammer K (1998c) Agrarbiodiversitaet und pflanzengenetische Resourcen. Band 10. Bonn: Zentralstelle fuer Agrardokumentation und Information (ZADI)

  40. Hammer K, Laghetti G (2005) Genetic erosion-examples from Italy. Genet Resour Crop Evol 52:629–634

    Article  Google Scholar 

  41. Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50

    Google Scholar 

  42. Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336

    Article  Google Scholar 

  43. Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Ortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240

    Google Scholar 

  44. Haseneyer G, Stracke S, Paul C, Einfeldt C, Broda A, Piepho HP, Graner A, Geiger HH (2010) Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breed 129:271–279

    CAS  Article  Google Scholar 

  45. Hoagland, Amon DS (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 374:l–l32

    Google Scholar 

  46. Hurd EA, Townley-Smith TF, Patterson LA, Owen CH (1972) Techniques used in producing Wascana wheat. Can J Plant Sci 52:689–691

    Article  Google Scholar 

  47. Kaufmann MC, Mcfadden AD (1963) The influence of seed size on results of yield trails. Can J Plant Sc 43:51–54

    Article  Google Scholar 

  48. Kaya MD, Okcub G, Ataka M, Cikilic Y, Kolsaricia O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295

    CAS  Article  Google Scholar 

  49. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11:38–50

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  50. Knüpffer H, van Hintum Th (2003) Summarized diversity—the barley core collection. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 259–267

    Chapter  Google Scholar 

  51. Kondo M, Pablico PP, Aragones DV, Agbisit R, Morita S, Courtois B (2003) Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant Soil 255:189–200

    CAS  Article  Google Scholar 

  52. Kumar B, Abdel-Ghani AH, Reyes-Matamoros J, Hochholdinger F, Lubberstedt T (2012) Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breed 131:465–478

    Article  Google Scholar 

  53. Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T (2014) Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci 224:9–19

    CAS  PubMed  Article  Google Scholar 

  54. Lawlor DW (1970) Absorption of polyethylene glycols by plant and their effects on plant growth. New Phytol l69:501–513

    Article  Google Scholar 

  55. Li C, Zhang G, Lance R (2007) Recent advances in breeding barley for drought and saline stress tolerant. In: Jenks MA, Haegawa PM, Mohan S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, The Netherlands, pp 603–626

    Chapter  Google Scholar 

  56. Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760

    CAS  PubMed  Article  Google Scholar 

  57. Lisar SYS, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses, water stress. In: Rahman IMM (ed) In Tech, pp. 1–12. ISBN: 978-953-307-963-9. http://www.intechopen.com/books/water-stress/water-stress-inplants-causes-effects-and-responses

  58. Lobato AKS, Oliveira Neto CF, Costa RCL, Santos Filho BG, Silva FKS, Cruz FJR, Abboud ACS, Laughinghouse HD (2008) Germination of sorghum under the influences of water restriction and temperature. Agriculture J3:220–224

    Google Scholar 

  59. Lopez-Castaneda C, Richards RA (1994) Variation in temperate cereals in rainfed environments: II Phasic development and growth. Field Crop Res 37:63–75

    Article  Google Scholar 

  60. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised description of barley genes. Barley Genet Newletter 26:22–516

    Google Scholar 

  61. Lynch J, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    CAS  Article  Google Scholar 

  62. Manavalan LK, Musket T, Nguyen HT (2011) Natural genetic variation for root traits among diversity lines of maize (Zea mays L.). Maydica 56:1–10

    Google Scholar 

  63. Mano Y, Nakazumi H, Takeda K (1996) Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breeding Sci 46:227–233

    Google Scholar 

  64. Manschadi AM, Christopher J, de Voil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837

    CAS  Article  Google Scholar 

  65. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2012) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. The Plant Journal 76:494–505

    Google Scholar 

  66. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  67. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249

    CAS  Article  Google Scholar 

  68. Murillo-Amador B, Lopez-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernandez A (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence, and seedling growth of cowpea. J Agron Crop Sci 88:235–247

    Article  Google Scholar 

  69. Nass HG, Zuber MS (1971) Correlation of corn (Zea mays L.) roots toearly in development to mature root development. Crop Sci 11:655–658

    Article  Google Scholar 

  70. Nayak SN, Jayashree B, Upadhyaya HD, Hash CT, KaviKishor PB, Chattopadhyay D et al. (2009) Isolation and sequence analysis of DREB2A homologues in three cereals and two legume species. Plant Sci 117:460–467

    Article  Google Scholar 

  71. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685

    CAS  Article  Google Scholar 

  72. Palusk MM, Dobrenz AK, Ramang RT (1979) Seed size and seedling components in Arivat barley. J Arizona-Nevada Acad Sci 14:88–90

    Google Scholar 

  73. Pandey RK, Maranville JW, Chetima MM (2000a) Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction. Agric Water Manage 46:15–27

    Article  Google Scholar 

  74. Pandey RK, Maranville JW, Admou A (2000b) Deficit irrigation and nitrogen effects on maize in a Sahelian envrionment. I. Grain yield and yield components. Agric Water Manage 46:1–13

    Article  Google Scholar 

  75. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:1–22

    Article  Google Scholar 

  76. Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28

    CAS  Article  Google Scholar 

  77. Pillen K, Zachaias A, Léon J (2003) Advanced backcross QTL analysis in barley (H. vulgare L.). Theor Appl Genet 107:340–352

    CAS  PubMed  Article  Google Scholar 

  78. Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200

    PubMed  Article  Google Scholar 

  79. Ramankuttya N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeogr Cycles 12: 667–685

  80. Rapacz M, Koscielniak J, Jurczyk B, Adamska A, Wojcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). http://www.researchgate.net/journal/1439-037X_Journal_of_Agronomy_and_Crop_Science196:9-19

  81. Richards A, Passioura B (1981) Seminal root morphology and water use of wheatII. Genetic variation. Crop Sci 21:253–255

    Article  Google Scholar 

  82. Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126:2803–2824

    CAS  PubMed  Article  Google Scholar 

  83. Rubio G, Liao H, Yan XL, Lynch JP (2003) Top soil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607

    Article  Google Scholar 

  84. Sahnoune M, Adda A, Soualem S, Harch KH, Merah O (2004) Early water-deficit effects on seminal roots morphology in barley. Biologies 327:389–398

    PubMed  Article  Google Scholar 

  85. Samarah H (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Article  Google Scholar 

  86. Sayed MAA (2011) QTL Analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.). PhD Thesis, der Rheinischen Friedrich-Wilhelms-Universität Bonn, Germany

  87. Shakhatreh Y, Kafawin O, Ceccarelli S, Saoub H (2001) Selection of barley lines for drought tolerance in low-rainfall. J Agron Crop Sci 186:119–127

    Article  Google Scholar 

  88. Shakhatreh Y, Haddad N, Ceccarelli S (2008) An integrated biplot analysis system for interpreting and exploring genotype × interaction for wild type genotypes. Crop Res 36:42–49

    Google Scholar 

  89. Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25249–257

  90. Streda T, Dostál V, Horáková V, Chloupek O (2011) Drought and root system size of barley and wheat. Tagung der Österreichischen Gesellschaft für Wurzelforschung, 65–66

  91. Szira F, Balint AF, Börner A, Galiba G (2008) Evaluation of drought related traits and screening methods at different developmental stages in spring barley. J Agron Crop Sci 194:334–342

    Article  Google Scholar 

  92. Takahashi H, Sato K, Takeda K (2001) Mapping genes for deep-seeding tolerance in barley. Euphytica 122:37–43

    CAS  Article  Google Scholar 

  93. Talamè V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneoum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144:309–319

    Article  Google Scholar 

  94. Teklu Y, Hammer K (2006) Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1099–1113

    Article  Google Scholar 

  95. Tesfaye T, Getachew B, Worende M (1991) Morphological diversity in tetraploid wheat landrace populations from the central highlands of Ethiopia. Hereditas 114:171–176

    Article  Google Scholar 

  96. Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Article  Google Scholar 

  97. Thompson RK (1971) New concepts of barley culture. Barley Newsl 15:9–14

    Google Scholar 

  98. Tuberosa R, Salvi S, Sanguinetti MC, Maccaferi M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    CAS  Article  Google Scholar 

  99. Utz HF (2000) PLABSTAT, a computer program for the statistical analysis of plant breeding experiments. Version 2N. Institute of Plant Breeding, Seed Science, and Population Genetics University of Hohenheim, Stuttgart, Germany. http://www.uni-hohenheim.de/~ipspwww/soft.html

  100. Wang Y, Mi GH, Chen F, Zhang F (2003) Genotypic differences in nitrogen uptake by maize inbred lines its relation to root morphology. Acta Ecol Sin 23:297–302

    Google Scholar 

  101. Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Ann Bot 61:433–449

    Google Scholar 

  102. Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130

    CAS  PubMed  Article  Google Scholar 

  103. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    CAS  PubMed  Article  Google Scholar 

  104. Zuber MS (1968) Evaluation of corn root system under various environments. Proc Corn Sorghum Res Conf 23:67–75

    Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Maximilian Rembe, Axel Aßfalg, Christiane Kehler, Ute Krajewski, Heike Harms, Birgit Dubsky, Marita Nix, Kerstin Wolf, Fatemeh Nasernakai and Enk Geyer and for their technical assistance.We thank Manuela Nagel, Ben Gruber, Nicolaus von Wirén, Helmy Youssef and Ahmad Alqudah for discussions and support. We thank the GABI-GENOBAR and the CROP.SENSe.net consortium, for collaboration. Adel Abdel-Ghani was a visiting scientist at Leibniz Institute of Plant Genetics and Crop Plant, Research (IPK) in 2012—based on the scientific agreement cooperation between the Deutsche Forschungsgemeinschaft (DFG) and the Higher Council for Science and Technology (HCST) of Jordan. The authors wish to thank the Deutsche Forschungsgemeinschaft for financial support (KI 1465/8-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adel H. Abdel-Ghani.

Additional information

Adel H. Abdel-Ghani and Kerstin Neumann have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 59 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdel-Ghani, A.H., Neumann, K., Wabila, C. et al. Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions. Genet Resour Crop Evol 62, 275–292 (2015). https://doi.org/10.1007/s10722-014-0152-z

Download citation

Keywords

  • Barley diversity
  • Drought tolerance
  • Germination rate
  • Hordeum vulgare L.
  • PEG-treatment
  • Root traits