Advertisement

Genetic Resources and Crop Evolution

, Volume 62, Issue 2, pp 275–292 | Cite as

Diversity of germination and seedling traits in a spring barley (Hordeum vulgare L.) collection under drought simulated conditions

  • Adel H. Abdel-GhaniEmail author
  • Kerstin Neumann
  • Celestine Wabila
  • Rajiv Sharma
  • Sidram Dhanagond
  • Saed J. Owais
  • Andreas Börner
  • Andreas Graner
  • Benjamin Kilian
Research Article

Abstract

This research evaluated the genotypic variation in a diverse set of 233 barley genotypes including 57 landraces in the context of early drought tolerance using polyethylene glycol-(PEG) induced osmotic stress on germinating seeds. The effect of PEG treatment ranged from accelerating to delaying the germination rate. PEG showed inhibitory effects on all seedling traits. Expressions of root and shoot traits recorded under optimum and under PEG-induced drought stress were positively and significantly correlated. Combined analysis of variance over experiments and treatments showed intermediate to high broad sense heritability values ranging from 0.42 to 0.76 for germination rate and seedling traits. Higher heritability values were obtained under optimum conditions as compared to PEG-induced drought stress conditions, indicating that the selection for genotypes with a more vigorous root system would be more efficient under optimum conditions. The extensive genetic variation for root morphology-related traits found in this diverse collection opens the opportunity to further investigate the analyzed root traits as selection criteria to improve barley performance under drought stress and to reveal the genetic basis for the observed stress tolerance by a genome-wide association study.

Keywords

Barley diversity Drought tolerance Germination rate Hordeum vulgare L. PEG-treatment Root traits 

Notes

Acknowledgments

The authors are very thankful to Maximilian Rembe, Axel Aßfalg, Christiane Kehler, Ute Krajewski, Heike Harms, Birgit Dubsky, Marita Nix, Kerstin Wolf, Fatemeh Nasernakai and Enk Geyer and for their technical assistance.We thank Manuela Nagel, Ben Gruber, Nicolaus von Wirén, Helmy Youssef and Ahmad Alqudah for discussions and support. We thank the GABI-GENOBAR and the CROP.SENSe.net consortium, for collaboration. Adel Abdel-Ghani was a visiting scientist at Leibniz Institute of Plant Genetics and Crop Plant, Research (IPK) in 2012—based on the scientific agreement cooperation between the Deutsche Forschungsgemeinschaft (DFG) and the Higher Council for Science and Technology (HCST) of Jordan. The authors wish to thank the Deutsche Forschungsgemeinschaft for financial support (KI 1465/8-1).

Supplementary material

10722_2014_152_MOESM1_ESM.docx (60 kb)
Supplementary material 1 (DOCX 59 kb)

References

  1. Abdel-Ghani AH (2003) Genetic studies on the outcrossing rate and related floral characteristics in barley (Hordeum vulgare ssp. vulgare and H. v. ssp. spontaneum). PhD thesis, University of Hohenheim, GermanyGoogle Scholar
  2. Abdel-Ghani AH (2009) Response of wheat varieties from semi-arid regions of Jordan to salt stress. J Agron Crop Sci 195:55–65CrossRefGoogle Scholar
  3. Abdel-Ghani AH, Parzies HK, Omary A, Geiger HH (2004) Estimating of out crossing rate of barley landraces and wild barley populations collected from ecologically different regions of Jordan. Theor Appl Genet 109:588–595PubMedCrossRefGoogle Scholar
  4. Abdel-Ghani AH, Kumar B, Reyes-Matamoros J, Gonzalez-Portilla PJ, Jansen C, San Martin JP, Lee M, Lübberstedt T (2013) Genotypic variation and relationships between seedling and adult plant traits in maize (Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica 189:123–133CrossRefGoogle Scholar
  5. Al-Karaki GN (2008) Response of wheat and barley during germination to seed osmopriming at different water potential. J Agron Crop Sci 181:229–235CrossRefGoogle Scholar
  6. Al-Karaki G, Al-Ajimi A, Othman Y (2007) Seed germination and early root growth of three barley cultivars as affected by temperature and water stress. Am Eurasian J Agric Environ Sci 2:112–117Google Scholar
  7. Andrew RH, Solanki SS (1966) Comparative root morphology for inbred lines of corn as related to performance. Agron J 58:415–418CrossRefGoogle Scholar
  8. Atlin GN, Frey KG (1990) Predicting the relative effectiveness of direct versus indirect selection for oat yield in three types of stress environments. Crop Sci 30:556–561CrossRefGoogle Scholar
  9. Baker RJ (1986) Selection indices in plant breeding. CRC Press, Boca RatonGoogle Scholar
  10. Bálint A, Börner A, Cattivelli L, Dubcovsky J, Galiba G, Szira F, Vágújfalvi A (2008) QTLs and genes for abiotic stress tolerance in cereals: their general role in the environmental adaptation and their developmental-stage specificity. In: Molina-Cano JL, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa JM, Powell W, Royo C, Shewry P, Stanca AM (eds) Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza: CIHEAM/IRTA. Options Méditerranéennes: Série A.SéminairesMéditerranéen s; n. 81, pp 197–200Google Scholar
  11. Barber SA, MacKay AD (1986) Root growth and phosphorus and potassium uptake by two corn genotypes in the field. Fert Res 10:217–230Google Scholar
  12. Baum M, Korf VM, Guo P, Lakew B, Hamwieh A, Lababidi S, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney RK,Tuberosa R (eds) Genomics applications in crops. Springer Science + Business Media, The Netherlands, pp 51–79Google Scholar
  13. Belford RK, Klepper B, Rickman RW (1987) Studies of intact shoot-root systems of field-grown winter wheat. II. Root and shoot developmental patterns as related to nitrogen fertilizer. Agron J 79:310–319CrossRefGoogle Scholar
  14. Bingham IJ, Bengough AG (2003) Morphological plasticity of wheat and barley roots in response to spatial. Plant Soil 250:273–282CrossRefGoogle Scholar
  15. Brar G, Gomez J, McMichael B, Matches A, Taylor H (1991) Germination of twenty forage legumes as influenced by temperature. Agron J 83:173–175CrossRefGoogle Scholar
  16. Ceccarelli S (1996) Adaptation to low/high input cultivation conditions. Euphytica 92:203–214CrossRefGoogle Scholar
  17. Ceccarelli S, Grando S, Baum M, Udupa M (2004) Breeding for drought resistance in a changing climate. Crop Sci 32:1–24Google Scholar
  18. Chloupek O, Forster BP, Thomas WTB (2006) The effect of semi-dwarf genes on root system size in field-grown barley. Theor Appl Genet 112:779–786PubMedCrossRefGoogle Scholar
  19. Chloupek O, Dostal V, Streda T, Psota V, Dvorackova O (2013) Drought tolerance of barley varieties in relation to their root system size. Plant Breed 129:630–636CrossRefGoogle Scholar
  20. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392PubMedCrossRefGoogle Scholar
  21. De Leonardis AM, Petrarulo M, De Vita P, Mastrangelo AM (2012) Genetic and molecular aspects of plant response to drought in annual crop species, advances in selected plant physiology aspects. In: Montanaro G (ed) InTech. ISBN: 978-953-51-0557-2. http://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/genetic-and-molecularaspects-of-plant-response-to-drought-stress
  22. Dhanda SS, Sethi GS, Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci 190:6–12CrossRefGoogle Scholar
  23. Eghball B, Maranville JW (1993) Root development and nitrogen influx of corn genotypes grown under combined drought and N stress. Agron J 85:147–152CrossRefGoogle Scholar
  24. El-Beltagy A, Madkour M (2012) Impact of climate change on arid lands agriculture. Agric Food Secur 1:1–12CrossRefGoogle Scholar
  25. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, HarlowGoogle Scholar
  26. FAO statistical year book: World food and agriculture (1997–2011)Google Scholar
  27. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. 1: grain yield response. Aust J Agr Res 29:897–912CrossRefGoogle Scholar
  28. Forster B, Ellis R, Moir J, Talame V, Sanguineti M, Tuberosa R, This D, Teulat-Merah B, Ahmed I, Mariy S, Bahri H, El-Ouahabi M, Zoumarou-Wallis N, El- Fellah M, Salem M (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144:157–168CrossRefGoogle Scholar
  29. Gonzalez A, Martin I, Ayerbe L (2008) Yield and osmotic adjustment capacity of barley under terminal water stress. J Agron Crop Sci 194:81–91CrossRefGoogle Scholar
  30. Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crop Res 122:1–13CrossRefGoogle Scholar
  31. Grando S, Cecceralli C (1995) Seminal root morphology and coleoptile length in wild (Hordeum vulgare ssp. spontaneum) and cultivated (Hordeum vulgare ssp. vulgare) barley. Euphytica 86:73–80CrossRefGoogle Scholar
  32. Gregory PJ (1994) Root growth and activity. In: Peterson GA (ed) Physiology and determination of crop yield, ASA, CSSA, and SSSA. Madison, WI, pp 65–93Google Scholar
  33. Gregory PJ, Tennant CD, Belford RK (1992) Root and shoot growth, and water and light use efficiency of barley and wheat crops grown on a shallow duplex soil in a Mediterranean-type environment. Aust J Agric Res 43:555–573CrossRefGoogle Scholar
  34. Gregory PJ, Bengough AG, Grinev D, Schmidt S, Thomas WTB, Wojciechowski T, Young IM (2009) Root phenomics of crops: opportunities and challenges. Funct Plant Biol 36:922–929CrossRefGoogle Scholar
  35. Hallauer AR, Miranda JB (1988) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, AmesGoogle Scholar
  36. Hammer K (1991) Checklists and germplasm collecting. FAO/IBPGR. Plant Genet Resour Newsl 85:15–17Google Scholar
  37. Hammer K (1998a) Agrarbiodiversität und pflanzengenetische Ressourcen. Schriften zu Genetischen Ressourcen 10: 98SGoogle Scholar
  38. Hammer K (1998b) Genpools—Struktur, Verfügbarkeit und Bearbeitung für die Züchtung. In: Begemann F (ed) Schriften zu Genetischen Ressourcen, vol 8. ZADI, Bonn, pp 4–14Google Scholar
  39. Hammer K (1998c) Agrarbiodiversitaet und pflanzengenetische Resourcen. Band 10. Bonn: Zentralstelle fuer Agrardokumentation und Information (ZADI)Google Scholar
  40. Hammer K, Laghetti G (2005) Genetic erosion-examples from Italy. Genet Resour Crop Evol 52:629–634CrossRefGoogle Scholar
  41. Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50Google Scholar
  42. Hammer K, Knüpffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Resour Crop Evol 43:329–336CrossRefGoogle Scholar
  43. Harris D, Tripathi RS, Joshi A (2002) On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In: Pandey S, Ortimer M, Wade L, Tuong TP, Lopes K, Hardy B (eds) Direct seeding: research strategies and opportunities. International Research Institute, Manila, pp 231–240Google Scholar
  44. Haseneyer G, Stracke S, Paul C, Einfeldt C, Broda A, Piepho HP, Graner A, Geiger HH (2010) Population structure and phenotypic variation of a spring barley world collection set up for association studies. Plant Breed 129:271–279CrossRefGoogle Scholar
  45. Hoagland, Amon DS (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 374:l–l32Google Scholar
  46. Hurd EA, Townley-Smith TF, Patterson LA, Owen CH (1972) Techniques used in producing Wascana wheat. Can J Plant Sci 52:689–691CrossRefGoogle Scholar
  47. Kaufmann MC, Mcfadden AD (1963) The influence of seed size on results of yield trails. Can J Plant Sc 43:51–54CrossRefGoogle Scholar
  48. Kaya MD, Okcub G, Ataka M, Cikilic Y, Kolsaricia O (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24:291–295CrossRefGoogle Scholar
  49. Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11:38–50PubMedCentralPubMedCrossRefGoogle Scholar
  50. Knüpffer H, van Hintum Th (2003) Summarized diversity—the barley core collection. In: von Bothmer R, van Hintum Th, Knüpffer H, Sato K (eds) Diversity in barley (Hordeum vulgare). Elsevier, Amsterdam, pp 259–267CrossRefGoogle Scholar
  51. Kondo M, Pablico PP, Aragones DV, Agbisit R, Morita S, Courtois B (2003) Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant Soil 255:189–200CrossRefGoogle Scholar
  52. Kumar B, Abdel-Ghani AH, Reyes-Matamoros J, Hochholdinger F, Lubberstedt T (2012) Genotypic variation for root architecture traits in seedlings of maize (Zea mays L.) inbred lines. Plant Breed 131:465–478CrossRefGoogle Scholar
  53. Kumar B, Abdel-Ghani AH, Pace J, Reyes-Matamoros J, Hochholdinger F, Lübberstedt T (2014) Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings. Plant Sci 224:9–19PubMedCrossRefGoogle Scholar
  54. Lawlor DW (1970) Absorption of polyethylene glycols by plant and their effects on plant growth. New Phytol l69:501–513CrossRefGoogle Scholar
  55. Li C, Zhang G, Lance R (2007) Recent advances in breeding barley for drought and saline stress tolerant. In: Jenks MA, Haegawa PM, Mohan S (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, The Netherlands, pp 603–626CrossRefGoogle Scholar
  56. Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760PubMedCrossRefGoogle Scholar
  57. Lisar SYS, Motafakkerazad R, Hossain MM, Rahman IMM (2012) Water stress in plants: causes, effects and responses, water stress. In: Rahman IMM (ed) In Tech, pp. 1–12. ISBN: 978-953-307-963-9. http://www.intechopen.com/books/water-stress/water-stress-inplants-causes-effects-and-responses
  58. Lobato AKS, Oliveira Neto CF, Costa RCL, Santos Filho BG, Silva FKS, Cruz FJR, Abboud ACS, Laughinghouse HD (2008) Germination of sorghum under the influences of water restriction and temperature. Agriculture J3:220–224Google Scholar
  59. Lopez-Castaneda C, Richards RA (1994) Variation in temperate cereals in rainfed environments: II Phasic development and growth. Field Crop Res 37:63–75CrossRefGoogle Scholar
  60. Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised description of barley genes. Barley Genet Newletter 26:22–516Google Scholar
  61. Lynch J, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237CrossRefGoogle Scholar
  62. Manavalan LK, Musket T, Nguyen HT (2011) Natural genetic variation for root traits among diversity lines of maize (Zea mays L.). Maydica 56:1–10Google Scholar
  63. Mano Y, Nakazumi H, Takeda K (1996) Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breeding Sci 46:227–233Google Scholar
  64. Manschadi AM, Christopher J, de Voil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837CrossRefGoogle Scholar
  65. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2012) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. The Plant Journal 76:494–505Google Scholar
  66. Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537CrossRefGoogle Scholar
  67. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9:230–249CrossRefGoogle Scholar
  68. Murillo-Amador B, Lopez-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernandez A (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence, and seedling growth of cowpea. J Agron Crop Sci 88:235–247CrossRefGoogle Scholar
  69. Nass HG, Zuber MS (1971) Correlation of corn (Zea mays L.) roots toearly in development to mature root development. Crop Sci 11:655–658CrossRefGoogle Scholar
  70. Nayak SN, Jayashree B, Upadhyaya HD, Hash CT, KaviKishor PB, Chattopadhyay D et al. (2009) Isolation and sequence analysis of DREB2A homologues in three cereals and two legume species. Plant Sci 117:460–467CrossRefGoogle Scholar
  71. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685CrossRefGoogle Scholar
  72. Palusk MM, Dobrenz AK, Ramang RT (1979) Seed size and seedling components in Arivat barley. J Arizona-Nevada Acad Sci 14:88–90Google Scholar
  73. Pandey RK, Maranville JW, Chetima MM (2000a) Deficit irrigation and nitrogen effects on maize in a Sahelian environment II. Shoot growth, nitrogen uptake and water extraction. Agric Water Manage 46:15–27CrossRefGoogle Scholar
  74. Pandey RK, Maranville JW, Admou A (2000b) Deficit irrigation and nitrogen effects on maize in a Sahelian envrionment. I. Grain yield and yield components. Agric Water Manage 46:1–13CrossRefGoogle Scholar
  75. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:1–22CrossRefGoogle Scholar
  76. Patade VY, Bhargava S, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28CrossRefGoogle Scholar
  77. Pillen K, Zachaias A, Léon J (2003) Advanced backcross QTL analysis in barley (H. vulgare L.). Theor Appl Genet 107:340–352PubMedCrossRefGoogle Scholar
  78. Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200PubMedCrossRefGoogle Scholar
  79. Ramankuttya N, Foley JA (1998) Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeogr Cycles 12: 667–685Google Scholar
  80. Rapacz M, Koscielniak J, Jurczyk B, Adamska A, Wojcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). http://www.researchgate.net/journal/1439-037X_Journal_of_Agronomy_and_Crop_Science196:9-19
  81. Richards A, Passioura B (1981) Seminal root morphology and water use of wheatII. Genetic variation. Crop Sci 21:253–255CrossRefGoogle Scholar
  82. Rollins JA, Drosse B, Mulki MA, Grando S, Baum M, Singh M, Ceccarelli S, von Korff M (2013) Variation at the vernalisation genes Vrn-H1 and Vrn-H2 determines growth and yield stability in barley (Hordeum vulgare) grown under dryland conditions in Syria. Theor Appl Genet 126:2803–2824PubMedCrossRefGoogle Scholar
  83. Rubio G, Liao H, Yan XL, Lynch JP (2003) Top soil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607CrossRefGoogle Scholar
  84. Sahnoune M, Adda A, Soualem S, Harch KH, Merah O (2004) Early water-deficit effects on seminal roots morphology in barley. Biologies 327:389–398PubMedCrossRefGoogle Scholar
  85. Samarah H (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149CrossRefGoogle Scholar
  86. Sayed MAA (2011) QTL Analysis for drought tolerance related to root and shoot traits in barley (Hordeum vulgare L.). PhD Thesis, der Rheinischen Friedrich-Wilhelms-Universität Bonn, GermanyGoogle Scholar
  87. Shakhatreh Y, Kafawin O, Ceccarelli S, Saoub H (2001) Selection of barley lines for drought tolerance in low-rainfall. J Agron Crop Sci 186:119–127CrossRefGoogle Scholar
  88. Shakhatreh Y, Haddad N, Ceccarelli S (2008) An integrated biplot analysis system for interpreting and exploring genotype × interaction for wild type genotypes. Crop Res 36:42–49Google Scholar
  89. Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25249–257Google Scholar
  90. Streda T, Dostál V, Horáková V, Chloupek O (2011) Drought and root system size of barley and wheat. Tagung der Österreichischen Gesellschaft für Wurzelforschung, 65–66Google Scholar
  91. Szira F, Balint AF, Börner A, Galiba G (2008) Evaluation of drought related traits and screening methods at different developmental stages in spring barley. J Agron Crop Sci 194:334–342CrossRefGoogle Scholar
  92. Takahashi H, Sato K, Takeda K (2001) Mapping genes for deep-seeding tolerance in barley. Euphytica 122:37–43CrossRefGoogle Scholar
  93. Talamè V, Sanguineti MC, Chiapparino E, Bahri H, Ben Salem M, Forster BP, Ellis RP, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneoum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144:309–319CrossRefGoogle Scholar
  94. Teklu Y, Hammer K (2006) Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Resour Crop Evol 53:1099–1113CrossRefGoogle Scholar
  95. Tesfaye T, Getachew B, Worende M (1991) Morphological diversity in tetraploid wheat landrace populations from the central highlands of Ethiopia. Hereditas 114:171–176CrossRefGoogle Scholar
  96. Teulat B, Monneveux P, Wery J, Borries C, Souyris I, Charrier A, This D (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107CrossRefGoogle Scholar
  97. Thompson RK (1971) New concepts of barley culture. Barley Newsl 15:9–14Google Scholar
  98. Tuberosa R, Salvi S, Sanguinetti MC, Maccaferi M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54CrossRefGoogle Scholar
  99. Utz HF (2000) PLABSTAT, a computer program for the statistical analysis of plant breeding experiments. Version 2N. Institute of Plant Breeding, Seed Science, and Population Genetics University of Hohenheim, Stuttgart, Germany. http://www.uni-hohenheim.de/~ipspwww/soft.html
  100. Wang Y, Mi GH, Chen F, Zhang F (2003) Genotypic differences in nitrogen uptake by maize inbred lines its relation to root morphology. Acta Ecol Sin 23:297–302Google Scholar
  101. Wilson JB (1988) A review of evidence on the control of shoot: root ratio, in relation to models. Ann Bot 61:433–449Google Scholar
  102. Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130PubMedCrossRefGoogle Scholar
  103. Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339PubMedCrossRefGoogle Scholar
  104. Zuber MS (1968) Evaluation of corn root system under various environments. Proc Corn Sorghum Res Conf 23:67–75Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Adel H. Abdel-Ghani
    • 1
    Email author
  • Kerstin Neumann
    • 2
  • Celestine Wabila
    • 2
  • Rajiv Sharma
    • 2
  • Sidram Dhanagond
    • 2
  • Saed J. Owais
    • 1
  • Andreas Börner
    • 2
  • Andreas Graner
    • 2
  • Benjamin Kilian
    • 2
    • 3
  1. 1.Department of Plant Production, Faculty of AgricultureMu’tah UniversityMu’tah, KarakJordan
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Innovation Center, BCS R&D - Trait Research - PhysiologyBayer CropScience NVZwijnaarde (Gent)Belgium

Personalised recommendations