Genetic Resources and Crop Evolution

, Volume 61, Issue 3, pp 677–706 | Cite as

Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture

  • Maria Zaharieva
  • Philippe Monneveux
Notes on Neglected and Underutilized Crops


The first cultivated wheat, cultivated einkorn (Triticum monococcum L. subsp. monococcum), was domesticated in South-East Turkey during the Pre-Pottery Neolithic period. It then spread to the Middle-East, the Balkans and Caucasus, Turkmenistan, Central and Mediterranean Europe, North-Africa, and finally to Western and Northern Europe. In all these regions, it played an important role in the development of agriculture and was cultivated for several centuries before being replaced by free-threshing wheats. Today, cultivated einkorn is only present in isolated, mountainous areas of a few countries. However, there is renewed interest for this crop due to the nutritional qualities of its grain, its adaptation to low-input agriculture and high level of resistance to pests and diseases that represent advantages for organic farming. Cultivated einkorn is also a valuable reservoir of genes for wheat improvement. Its utilization, limited by its hulledness, low yield and especially by a poor knowledge of its diversity and its low crossability with bread and durum wheat, is expected to increase in the future, particularly with the need for wheat breeding to face newly emerging diseases through the use of genetic resistances. Considering these perspectives, the present review attempts to analyse the current and historical importance of einkorn cultivation and utilization in wheat breeding, tracing back to its origin and diffusion. The main traits of resistance to pest and diseases, and the nutritional qualities and technological characteristics of the grain are described. Einkorn genetic resources diversity exploration is reviewed and successful examples of introgression of useful einkorn traits into cultivated wheat are reported. Lastly, perspectives of einkorn cultivation development in low-input agriculture and use for wheat enhancement are discussed.


Breeding Distribution Diversity Einkorn wheat Nutritional value Triticum monococcum L. subsp. monococcum 



Thanks are due to Margarita Hernandez-Ellis for the helpful linguistic assistance and useful suggestions. We also gratefully acknowledge Dr. Karl Hammer and the reviewers for their valuable comments on the manuscript.


  1. Abdel-Aal ESM, Hucl P, Sosulski FW (1995) Compositional and nutritional characteristics of spring einkorn and spelt wheats. Cereal Chem 72:621–624Google Scholar
  2. Acquistucci R, D’Egidio MG, Vallega V (1995) Amino acid composition of selected strains of diploid wheat, Triticum monococcum L. Cereal Chem 72:213–216Google Scholar
  3. Adu MO, Sparkes DL, Parmar A, Yawson DO (2011) Stay green in wheat: comparative study of modern bread wheat and ancient wheat cultivars. ARPN J Agric Biol Sci 6:16–24Google Scholar
  4. Akhalkatsi M, Ekhvaia J, Asanidze Z (2012) Diversity and genetic erosion of ancient crops and wild relatives of agricultural cultivars for food: implications for nature conservation in Georgia (Caucasus). In: Tiefenbacher J (ed) Perspectives on nature conservation—patterns, pressures and prospects. InTech, pp 51–92Google Scholar
  5. Al Hakimi A, Monneveux P (1997) Utilization of ancient tetraploid wheat species for drought tolerance in durum wheat (Triticum durum Desf.). In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Aleppo, ICARDA, pp 273–279Google Scholar
  6. Alvarez JB, Moral A, Martín LM (2006) Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum). Genet Resour Crop Evol 53:1061–1067Google Scholar
  7. Anker CC, Buntjer J, Niks R (2001) Morphological and molecular characterisation confirm that Triticum monococcum s.s. is resistant to wheat leaf rust. Theor Appl Genet 103:1093–1098Google Scholar
  8. Anker CC, Niks RE (2001) Prehaustorial resistance to wheat leaf rust in Triticum monococcum (s.s.). Euphytica 117:209–215Google Scholar
  9. Arranz Otaegui A (2011) Analysis of archaeological plant macroremains from Tell Qarassa North (Syria): an example of early agriculture and woodland use in the Near East. Quat Stud Environ Changes Hum Fingerpr 1:3–17Google Scholar
  10. Auricchio S, De Ritis G, De Vincenzi M, Occorsio P, Silano V (1982) Effects of gliadin derived peptides from bread and durum wheats on small intestine cultures from rat fetus and coeliac children. Pediatric Res 16:1004–1010Google Scholar
  11. Aykroyd WR, Doughty J (1970) Wheat in human nutrition. FAO Nutritional Studies, RomeGoogle Scholar
  12. Bai D, Knott DR, Zale JM (1998) The inheritance of leaf and stem rust resistance in Triticum monococcum L. Can J Plant Sci 78(2):223–226Google Scholar
  13. Bakels CC (1978) Four Linearbandkeramik settlements and their environment: a paleoecological study of Sittard, Stein, Elsloo and Hienheim, Analecta Praehistorica Leidensia 11Google Scholar
  14. Bakels CC, Rousselle R (1985) Restes botaniques et agriculture du Néolithique Ancien en Belgique et aux Pays-Bas. Helimum 25:37–57 (in French)Google Scholar
  15. Ball TB, Brotherson DJ, Gardner SJ (1993) A typological and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Can J Bot 71:1182–1192Google Scholar
  16. Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot 86:1615–1623PubMedGoogle Scholar
  17. Ballouche A, Marinval P (2003) Données palynologiques et carpologiques sur la domestication des plantes et l’agriculture dans le Néolithique ancien du Maroc septentrional (Site de Kaf Taht el Ghar). Revue d’ Archéométrie 27:49–54 (in French)Google Scholar
  18. Barulina EI (1924) Triticum monococcum as an admixture to cereal crops in the Crimea. Bull Appl Bot Plant Breed (Leningrad) 14:136–139Google Scholar
  19. Bar-Yosef O (2002) The Upper Paleolithic revolution. Ann Rev Anthropol 31:363–393Google Scholar
  20. Bartl K, Űveges V (2004) Alakor (Triticum monococcum L. subsp. monococcum) gyomelnyomó hatása szabadföldi kisérletekben, különös tekintettel a parlagfûre (Ambrosia artemissiifolia L.). Magyar Alakorkutató Munkacsoport Második Konferenciája, MTA VEAB, Limnológia Tanszék (in Hungarian)Google Scholar
  21. Baum BR, Bailey LG (2004) The origin of the A genome donor of wheats (Triticum: Poaceae)—a perspective based on the sequence variation of the 5S DNA gene units. Genet Resour Crop Evol 51:183–196Google Scholar
  22. Bhagyalakshmi K, Vinod KK, Kumar M, Arumugachamy S, Prabhakaran AJ, Raveendran TS (2008) Interspecific hybrids from wild × cultivated Triticum crosses-a study on the cytological behaviour and molecular relations. J Crop Sci Biotech 11:257–262Google Scholar
  23. Biffen RH (1907) Studies in the inheritance of disease resistance. J Agric Sci 2:109–128Google Scholar
  24. Blanco A, Giorgi B, Perrino P, Simeone R (1990) Risorse genetiche e miglioramento della qualita’ del frumento duro. Agricoltura e Ricerca 114:41 (in Italian)Google Scholar
  25. Blaringhem L (1914) Sur la production d’hybrides entre l’engrain (Triticum monococcum L.) et différents blés cultivés. Comptes Rendus Acad Agric Paris 158:346 (in French)Google Scholar
  26. Bochev B (1993) Cytogenetic studies of wheat T. aestivum L. Publishing House of Bulgarian Academy of Sciences, Sofia, Bulgaria (in Bulgarian)Google Scholar
  27. Bor NL (1970) Gramineae. In: Rechinger KH (ed) Flora Iranica 70:203–211Google Scholar
  28. Borghi B, Castagna R, Corbellini M, Heun M, Salamini F (1996) Breadmaking quality of einkorn wheat (Triticum monococcum subsp. monococcum). Cereal Chem 73:208–214Google Scholar
  29. Borojevič S (1956) A note about the new dates for recent cultivation of Triticum monococcum and Triticum dicoccum in Yugoslavia. Wheat Inf Serv 4:1Google Scholar
  30. Borza A (1945) Alacul (Triticum monococcum) la Români. Bul Grăd Bot Cluj 25:93–119 (in Romanian, with French summary)Google Scholar
  31. Brandolini A, Hidalgo A, Moscaritolo S (2008) Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J Cereal Sci 47:599–609Google Scholar
  32. Brandolini A, Hidalgo A, Vaccino P, Plizzari L (2013) Phenotypic variation of a Triticum monococcum L. core collection. EUCARPIA Genetic Resources section meeting, 11-13 June 2013, Alnarp, Sweden. Accessed 3 Nov 2013
  33. Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305PubMedGoogle Scholar
  34. Buerli M (2006) Farro in Italy. A desk-study. GFU, Rome, Italy. Accessed 3 Nov 2013
  35. Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m). Theor Appl Genet 105:585–593PubMedGoogle Scholar
  36. Buschan G (1895) Vorgeschichtliche Botanik der Kultur- und Nutzpflanzen der altenWelt auf Grund prähistorischer Funde. Krens JV Verlag, BreslauGoogle Scholar
  37. Butnaru G, Sarac I, Blidar A, Holly L, Mar I (2003) Morpho-agronomic variability of Triticum monococcum L. landraces in the Timisoara area. ISIRR, Section IV, Hunedoara, Romania, pp 167–172Google Scholar
  38. Byrt CS, Platten DJ, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedCentralPubMedGoogle Scholar
  39. Cadle MM, Murray TD (1997) Identification of resistance to Pseudocercosporella herpotrichoides in Triticum monococcum. Plant Dis 81:1181–1186Google Scholar
  40. Caillaud CM, Niemeyer HM (1996) Possible involvement of phloem sealing system in the acceptance of a plant as host by an aphid. Experientia 52:927–931Google Scholar
  41. Cakmak I, Cakmak O, Eker S, Ozdemir A, Watanabe N, Braun HJ (1999) Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant Soil 215:203–209Google Scholar
  42. Castagna R, Borghi B, Bassinger G, Salamini F (1993) Induction and characterization of Triticum monococcum mutants affecting plant ear and morphology. J Genet Breed 47:127–138Google Scholar
  43. Castagna R, Borghi B, Di Fonzo N, Heun M, Salamini F (1995) Yield and related traits of einkorn (T. monococcum subsp. monococcum) in different environments. Eur J Agron 4:371–378Google Scholar
  44. Castagna R, Borghi B, Heun M, Salamini F (1996) Integrated approach to einkorn wheat breeding. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 183–192Google Scholar
  45. Castagna R, Maga G, Perenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationship of einkorn wheats. Theor Appl Genet 88:818–823PubMedGoogle Scholar
  46. Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance gene in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324PubMedGoogle Scholar
  47. Ciaffi M, Dominici L, Lafiandra D (1997) Gliadin polymorphism in wild and cultivated einkorn wheats. Theor Appl Genet 94:68–74PubMedGoogle Scholar
  48. Corbellini M, Empilli S, Vaccino P, Brandolini A, Borghi B, Heun M, Salamini F (1999) Einkorn characterisation for bread and cookie production in relation to protein subunit composition. Cereal Chem 76:727–733Google Scholar
  49. Cox TS, Harrell LG, Chen P, Gill BS (1991) Reproductive behavior of hexaploid/diploid wheat hybrids. Plant Breeding 107:105–118Google Scholar
  50. Dalby A (2003) Food in the Ancient World: From A to Z. Routledge, LondonGoogle Scholar
  51. Damania AB, Hakim S, Moualla MY (1992) Evaluation of variation in T. dicoccum for wheat improvement in stress environment. Hereditas 116:163–166Google Scholar
  52. Datta KS, Kumar A, Varma SK, Angrish R (1995) Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. J Plant Nutrit 18:2199–2212Google Scholar
  53. de Moulins D (1993) Les restes de plantes carbonisées de Çafer Höyük. Cahiers de l’Euphrate 7:191–234 (in French)Google Scholar
  54. de Moulins D (2000) Abu Hureyra 2: plant remains from the Neolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates: from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp 399–422Google Scholar
  55. D’Egidio MG, Nardi S, Vallega V (1993) Grain, flour, and dough characteristics of selected strains of diploid wheat, Triticum monococcum L. Cereal Chem 70:298–303Google Scholar
  56. D’Egidio MG, Vallega V (1994) Bread baking and dough mixing quality of diploid wheat Triticum monococcum L. Industrie Alimentari 4:6Google Scholar
  57. Deloye H, Laby H (1948) Les varietés des céréales cultivées en Algérie. Agria, Alger (in French)Google Scholar
  58. Dhaliwal HS, Chhuneja P, Singh I, Ghai M, Goel RK, Garg M, Keller B, Röder M, Singh K (2003) Triticum monococcum - a novel source for transfer and exploitation of disease resistance in wheat. In: Proceedings of the 10th international wheat genetics symposium, Paestum, Italy, pp 346–349Google Scholar
  59. Di Pietro JP, Caillaud CM, Chaubet B, Pierre JS, Trottet M (1998) Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat accessions: multivariate analysis of agronomic data. Plant Breed 117:407–412Google Scholar
  60. Diederichsen A, Rozhkov RV, Korzhenevsky VV, Boguslavsky RL (2010) Ukrainian-Canadian resources expedition in the Crimea in 2009. Annals of the Nikitsky Botanical Garden 101:5–13 (in Russian)Google Scholar
  61. Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, Leningrad (in Russian)Google Scholar
  62. Dorofeev VF, Udachin RA, Semenova LV, Novikova MV, Grazhdaninova OD, Shitova IP, Merezhko AF, Filatenko AA (1987) World wheat. Agropromizdat, Leningrad (in Russian)Google Scholar
  63. Dubcovsky J, Luo MC, Dvořák J (1999) Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Phl locus. Proc Natl Acad Sci USA 92:6645–6649Google Scholar
  64. Dubcovsky J, Luo MC, Zhon GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvořák J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999PubMedGoogle Scholar
  65. Ducellier L (1921) Amélioration des céréales d’Algérie. Revue Agricole de l’Afrique du Nord 14 (in French)Google Scholar
  66. Ducellier L (1930) Espèces et variétés de céréales cultivées en Algérie. Gouvernement général de l’Algérie, Alger (in French)Google Scholar
  67. Dyck PL, Bartos P (1994) Attempted transfer of leaf rust resistance from Triticum monococcum and durum wheat to hexaploid wheat. Can J Plant Sci 74:733–736Google Scholar
  68. El Bouhssini M, Lhaloui S, Hatchett JH, Naber N (1997) Nouveaux gènes de résistance efficaces contre la mouche de Hesse (Diptère: Cécidomyiidae) au Maroc. Al Awamia 96:55–63 (in French)Google Scholar
  69. Elmazov E (2012) The bread of the origins. Einkorn, the wild wheat of Antiquity. Heliopol, Bulgaria (in Bulgarian)Google Scholar
  70. Empilli S, Castagna R, Brandolini A (2000) Morpho-agronomic variability of the diploid wheat Triticum monococcum L. Plant Genet Resour Newsl 124:36–40Google Scholar
  71. Engert N, Honermeier B (2011) Characterization of grain quality and phenolic acids in ancient wheat species (Triticum sp.). J Appl Bot Food Qual 84:33–39Google Scholar
  72. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321PubMedGoogle Scholar
  73. Favret EA, Cervetto JL, Solari R, Bolondi A, Manghers L, Boffi A, Ortiz J (1987) Comparative effect of diploid, tetraploid and hexaploid wheat on the small intestine of coeliac patients. In: Proc Eight Meeting Latin-American Soc Pediatr Gastroenterology and Nutrition, San Paolo, Brazil (in Spanish)Google Scholar
  74. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Mapbased isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258PubMedGoogle Scholar
  75. Filatenko A, Hammer K (1997) New descriptions of hulled wheats on the infraspecific level. Genet Resour Crop Evol 44:285–288Google Scholar
  76. Filatenko AA, Grau M, Knüpffer H, Hammer K (2002) Discriminating characters of diploid wheat species. In: Hernandez P, Moreno MT, Cubero JI, Martin A (eds), Triticeae IV. Proceedings of 4th Internat Triticeae Sympos, Córdoba, Spain, pp 153–156Google Scholar
  77. Filatenko AA, Kurkiev UK (1975) A new species - Triticum sinskajae A. Filat et Kurk. Trudi po Prikladnoi Botanike. Genetike i Selektsii 54:239–241 (in Russian)Google Scholar
  78. Flaksberger KA (1935) Flora of cultivated plants, vol. I. Cereals, Wheat, vol I. State Agricultural Publishing Company, Moscow (in Russian)Google Scholar
  79. Frégeau-Reid J, Abdel-Aal ESM (2005) Einkorn: a potential functional wheat and genetic resource. In: Wood P, Abdel Aal ESM (eds) Speciality grains for food and feed. American Association of Cereal Chemists Inc, Minnesota, pp 37–62Google Scholar
  80. Frisoni M, Vallega V, D’Egidio MG, Corazza GR, Gasbarrini G (1995) In vitro toxicity of gluten of three wheat species on the intestinal mucosa of coeliac patients. In: Abstr ICC Conf on the role of cereals in future nutrition, Vienna, Austria, p 8Google Scholar
  81. Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20:1–86Google Scholar
  82. Fuller DQ, Stevens CJ (2009) Agriculture and the development of complex societies: an archaeobotanical agenda. In: Fairbairn A, Weiss E (eds) From foragers to farmers: papers in honour of Gordon C. Hillman. Oxbow Books, Oxford, pp 37–57Google Scholar
  83. Garrard A (1999) Charting the emergence of cereal and pulse domestication in south-east Asia. Env Archaeol 4:67–86Google Scholar
  84. Garrard A, Baird D, Colledge S, Martin L, Wright K (1994) Prehistoric environment and settlement in the Azraq Basin: an interim report on the 1987 and 1988 excavation seasons. Levant 26:73–109Google Scholar
  85. Gerechter-Amitai ZK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20:281–285Google Scholar
  86. Gill RS, Dhaliwal HS, Multani DS (1988) Synthesis and evaluation of Triticum durum-T. monococcum amphiploids. Theor Appl Genet 75:912–916Google Scholar
  87. Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374Google Scholar
  88. Goletti T, Lio N, di Pace C, Osler R, Porceddu E, Scarascia Mugnozza GT (1990) Comparison of techniques for diagnosing barley yellow dwarf virus (BYDV) in Triticeae for identification of sources of genetic resistance. Revista di Agricoltura Subtropicale e Tropicale 84:367–375Google Scholar
  89. Golovnina KA, Kondratenko EY, Blinov AG, Goncharov NP (2010) Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol 10:168PubMedCentralPubMedGoogle Scholar
  90. Goncharov NP (2012) Sravnitelnaya genetika pshenitz i ikh sorodichey (Comparative genetics of wheats and their related species). Academic Publishing House “Geo”, Novosibirsk, Russia (in Russian with English Summary) p 523Google Scholar
  91. Gorham J, Bristol A, Young EM, Wyn Jones RG (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor Appl Genet 82:729–736PubMedGoogle Scholar
  92. Grausgruber H, Preinerstorfer B, Geleta N, Leopold L, Eticha F, Kandler W, Schuhmacher R, Bointner H, Siebenhandl-Ehn S (2010) Hulled wheats in organic agriculture - Agronomic and nutritional considerations. In: Dzyubenko N.I. (ed) 8th International Wheat Conference, 1–4 Jun, 2010, St. Petersburg, Russia, Abstracts of oral and poster presentations, N.I. Vavilov Research Institute of Plant Industry (VIR), St. Petersburg, pp 41–42Google Scholar
  93. Gul Kazi A, Rasheed A, Bashir F, Bux H, Aziz Napar A, Mujeeb-Kazi A (2011) A-genome based diversity status and its practical utilization in wheat. Ann Wheat Newsl 57:92–114Google Scholar
  94. Gunda B (1983) Cultural ecology of old cultivated plants in the Carpathian area. Ethnologia Europaea 13(2):145–179Google Scholar
  95. Guzmán C, Caballero L, Alvarez JB (2009) Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum) as determined by morphological traits and waxy proteins. Genet Resour Crop Evol 56:601–604Google Scholar
  96. Guzmán C, Caballero L, Martín MA, Alvarez JB (2012) Molecular characterization and diversity of the Pin a and Pin b genes in cultivated and wild diploid wheat. Mol Breed 30:69–78Google Scholar
  97. Guzy MR, Ehdaie B, Waines JG (1989) Yield and its components in diploids, tetraploid and hexaploid wheats in diverse environments. Ann Bot 64:635–642Google Scholar
  98. Hajnalová M, Dreslerová D (2010) Ethnobotany of einkorn and emmer in Romania and Slovakia: towards interpretation of archaeological evidence. Památky Archeologické CI:169–202Google Scholar
  99. Hajnalová M, Eliáš P, Pažinová N (2007) Ancient crop in modern world: traditional non-industrial cultivation methods and use of einkorn (Triticum monococcum) in modern Transylvania (Romania). In: Traditional Agroecosystems, Proceedings of the 1st International Conference and Satelite Workshop, Slovenská Poľnohospodárska Univerzita v Nitre, Nitra, pp 122–126Google Scholar
  100. Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers - a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505Google Scholar
  101. Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol 58:3–10Google Scholar
  102. Hammer K, Khoshbakht K (2005) Towards a “red list” for crop plants species. Genet Resour Crop Evol 52:249–265Google Scholar
  103. Hammer K, Laghetti G, Pignone D, Pistrick K, Xhuveli L, Perrino P (1994) Emergency collecting missions to Albania 1993. Plant Genet Resour Newsl 97:59–62Google Scholar
  104. Hammer K, Neumann M, Kison HU (1996) Pre-breeding work on einkorn—cooperation between genebank and breeders. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 198–202Google Scholar
  105. Hammer K, Perrino P (1984) Further information on farro (Triticum monococcum L. and T. dicoccon Schrank) in South Italy. Kulturpflanze 32:143–151Google Scholar
  106. Hammer K, Perrino P (1995) Plant genetic resources in South Italy and Sicily: studies towards in situ and on farm conservation. Plant Genet Resour Newsl 103:19–23Google Scholar
  107. Hanchinal RR, Yenagi NB, Bhuvaneswari G, Math KK (2005) Grain quality and value addition of emmer wheat. University of Agricultural Sciences Dharwad, Dharwad 63Google Scholar
  108. Harris DR, Gosden C (1996) The beginnings of agriculture in Central Asia. In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia. UCL Press, London, pp 370–389Google Scholar
  109. Harris DR, Masson VM, Berezin YE, Charles MP, Gosden C, Hillman GC, Kasparov AK, Korobkova GF, Kurbansakhatov K, Legge AJ, Limbrey S (1993) Investigating early agriculture in Central Asia: new research at Jeitun, Turkmenistan. Antiquity 67:324–338Google Scholar
  110. Helbaek H (1969) Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. In: Hole F, Flannery KV, Neely JA (eds) Prehistory and human ecology of the Deh Luran Plain, Musuem of Anthropology. University of Michigan, Ann Arbor, pp 383–426Google Scholar
  111. Heun M, Schäfer-Pregl R, Klawan D, Castagana R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314Google Scholar
  112. Hidalgo A, Brandolini A, Gazza L (2008) Influence of steaming treatment on chemical and technological characteristics of einkorn (Triticum monococcum L. subsp. monococcum) wholemeal flour. Food Chem 111:549–555Google Scholar
  113. Hidalgo A, Brandolini A, Ratti S (2009) Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. J Agric Food Chem 57:6342–6348PubMedGoogle Scholar
  114. Hillman G, Davies S (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J World Prehist 4:157–219Google Scholar
  115. Hjelmqvist H (1963) Zur Geschichte des Einkorns and des Emmers in Schweden. Bot Notiser 116:487–494 (in German)Google Scholar
  116. Hjelmqvist H (1966) Some notes on the old wheat species of Gotland. Hereditas 56:382–393Google Scholar
  117. Holden TG (2002) The food remains from the colon of the Tyrolean ice man. In: Dobney K, O’Connor T (eds) Bones and the man: Studies in honour of Don Brothwell. Oxbow Books, Oxford, pp 35–40Google Scholar
  118. Holubec V (1999) Principal collecting needs in Europe. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe: Conservation and sustainable utilization of plant genetic resources for food and agriculture. IPGRI, Braunschweig, pp 145–155Google Scholar
  119. Hopf M (1983) The plants found at Jericho. In: Kenyon KM, Holland TA (eds) Excavations in Jericho. Br School Archeol Jerusalem, London, pp 580–621Google Scholar
  120. Hovsepyan R, Willcox G (2008) The earliest finds of cultivated plants in Armenia: evidence from charred remains and crop processing residues in pisé from the Neolithic settlements of Aratashen and Aknashen. Veg His Archaeobot 17:63–71Google Scholar
  121. Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134Google Scholar
  122. Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedCentralPubMedGoogle Scholar
  123. Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 4:805–820Google Scholar
  124. Humphries CJ (1980) Triticum L. In: Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webbs DA (eds) Flora Europea, vol 5., Alismataceae to Orchidaceae. Cambridge University Press, Cambridge, pp 202–203Google Scholar
  125. Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586Google Scholar
  126. Igrejas G, Guedes-Pinto H, Carnide V, Branlard G (1999) The high and low molecular weight glutenin subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breed 118:297–302Google Scholar
  127. Jacobs AS, Pretorius JA, Kloppers FJ, Cox TS (1996) Mechanisms associated with wheat leaf rust resistance derived from Triticum monococcum. Phytopathology 86:588–595Google Scholar
  128. Jakubziner MM (1969) Immunity of different wheat species. Agric Biol 4:837–847 (in Russian)Google Scholar
  129. James RA, Davenport R, Munns R (2006) Physiological characterisation of two genes for Na + exclusion in wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547PubMedCentralPubMedGoogle Scholar
  130. Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Pretorius ZA (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099Google Scholar
  131. Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genom 10:458–465Google Scholar
  132. Jing HC, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K (2007) Identification of variation in adaptively important traits and genome wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot 58:3749–3764PubMedGoogle Scholar
  133. Jing HC, Lovell D, Gutteridge R, Jenk D, Kornyukhin D, Mitrofanova OP, Kema GHJ, Hammond-Kosack KE (2008) Phenotypic and genetic analysis of the Triticum monococcum: Mycosphaerella graminicola interaction. New Phytolog 179:1121–1132Google Scholar
  134. Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947PubMedCentralPubMedGoogle Scholar
  135. Jones G, Wardle K, Halstead P, Wardle D (1986) Crop storage at Assiros. Sci Am 254:96–103Google Scholar
  136. Jones MK, Allaby RG, Brown TA (1998) Wheat domestication. Science 279:302–303Google Scholar
  137. Jørgensen G (1981) Cereals from Sarup with some remarks on plant husbandry in Neolithic Denmark. Kuml 1981:221–231 (in Danish)Google Scholar
  138. Karagöz A (1996) Agronomic practices and socioeconomic aspects of emmer and einkorn cultivation in Turkey. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 172–177Google Scholar
  139. Kaur S, Chhuneja P, Dhaliwal HS, Singh K (2008) Transfer of a new leaf rust resistance genes from diploid T. monococcum and T. boeoticum to T. aestivum. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) The 11th international wheat genetics symposium proceedings, Sydney University PressGoogle Scholar
  140. Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409Google Scholar
  141. Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the Fertile Crescent. In: Feuillet C, Muehlbauer GJ (eds) Genetics and Genomics of the Triticeae, Plant Genetics and Genomics: Crops and Models 7. Springer, Berlin, pp 81–119Google Scholar
  142. Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol Biol Evol 24:2657–2668PubMedGoogle Scholar
  143. Kimber G, Feldman M (1987) Wild wheat, an introduction. Special Report 353, University of Missouri, USAGoogle Scholar
  144. Klassen L (2008) Zur Bedeutung von Getreide in der Einzelgrabkultur Jütlands. In: Dörfler W, Müller J (eds) Umwelt, Wirtschaft, Siedlungen im dritten vorchristlichen Jahrtausend Mitteleuropas und Südskandinaviens. Wachholtz, Neumünster, pp 49–65 (in German)Google Scholar
  145. Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer G (eds), Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models 7, Springer, Berlin, pp 31–79Google Scholar
  146. Kolmer JA, Anderson JA, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Sci 50:2392–2395Google Scholar
  147. Konvalina P, Capouchová I, Stehno Z, Moudrý J, Moudrý J Jr (2010) Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming. J Agrobiol 27(1):9–17Google Scholar
  148. Konvalina P, Capouchová I, Stehno Z, Moudrý J Jr, Moudrý J (2011) Fusarium identification by PCR and DON content in grain of ancient wheat. J Food Agric Environ 9:321–325Google Scholar
  149. Kostov D (1936) Investigation of polyploid plants XI. Amphiploid T. timopheevii Zhuk. T. monococcum L. Dokl Acad Sci USSR 1:32–36 (in Russian)Google Scholar
  150. Kovács G (2012) Items from Hungary. Agricultural Research Institute of the Hungarian Academy of Sciences. Ann Wheat Newsl 59:31–32Google Scholar
  151. Kreuz A, Boenke N (2002) The presence of two-grained einkorn at the time of the Bandkeramik culture. Veg His Archaeobot 1:233–240Google Scholar
  152. Kroll H (1981) Thessalische Kulturpflanzen. Archeo-Physika 8:173–189 (in German)Google Scholar
  153. Kroll H (1992) Einkorn from Feudvar, Vojvodina, II. What is the difference between emmerlike two-seeded einkorn and emmer? Rev Palaeobot Palynol 73:181–185Google Scholar
  154. Kuckuck H (1970) Primitive wheats. In: Frankel OH, Bennet E (eds) Genetic resources in plants, their exploration and conservation. IBP Handbooks no. 11, pp 249–266Google Scholar
  155. Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294PubMedGoogle Scholar
  156. Lachman J, Miholová D, Pivec V, Jírů K, Janovská D (2011) Content of phenolic antioxidants and selenium in grain of einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ 57:235–243Google Scholar
  157. Lachman J, Orsák M, Pivec V, Jírů K (2012) Antioxidant activity of grain of einkorn (Triticum monococcum L.), emmer (Triticum dicoccum Schuebl. [Schrank]) and spring wheat (Triticum aestivum L.) varieties. Plant Soil Environ 58:15–21Google Scholar
  158. Laghetti G, Fiorentino G, Hammer K, Pignone D (2009) On the trail of last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Resour Crop Evol 56:1163–1170Google Scholar
  159. Li HJ, Arterburn M, Jones SS, Murray TD (2005) Resistance to eyespot of wheat, caused by Tapessia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theor Appl Genet 111:932–940PubMedGoogle Scholar
  160. Lindsay MP, Lagudah ES, Hare RA et al (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114Google Scholar
  161. Lisicyna G (1983) Die altesten paläoethnobotanischen Funde in Nordmesopotamien. Zeitschrift für Archäologie 17:31–38 (in German)Google Scholar
  162. Lisitsina GN (1984) The Caucasus, a centre of ancient farming in Eurasia. In: van Zeis W, Casparie WA (eds) Plants and ancient man. Balkema, Rotterdam, pp 285–292Google Scholar
  163. Loskutov IG (1999) Vavilov and his institute. A history of the world collection of plant genetic resources in Russia. IPGRI, RomeGoogle Scholar
  164. Ma H, Hughes GR (1993) Resistance to Septoria nodorum blotch in several Triticum. Euphytica 70:151–157Google Scholar
  165. Ma H, Singh RP, Mujeeb-Kazi A (1997) Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94:279–286Google Scholar
  166. Maan SS, Lucken KA (1970) Interaction of Triticum boeoticum cytoplasm and genomes of T. aestivum and T. durum: restoration of male fertility and plant vigor. Euphytica 19:498–508Google Scholar
  167. Mac Key J (2005) Wheat: its concept, evolution and taxonomy. In: Royo C et al. (eds) Durum wheat breeding. Current approaches and future strategies, vol 1, pp 3–61Google Scholar
  168. Marinova E (2006) Archaeobotanical studies of the Bulgarian Neolithic. The current state of research and perspectives for future studies. In: Gatsov I, Schwarzberg H (eds) Aegean-Marmara-Black Sea: the present state of research on the early Neolithic. Beier and Beran Langenweissbach, Schriften des Zentrums für Archäologie und Kulturgeschichte des Schwarzmeerraumes, pp 187–194Google Scholar
  169. Martin L, Jacomet S, Thiebault S (2008) Plant economy during the Neolithic in a mountain context: the case of ‘‘Le Chenet des Pierres’’ in the French Alps (Bozel-Savoie, France) Veget Hist Archaeobot 17:113–122Google Scholar
  170. McCorriston J, Hole F (1991) The ecology of seasonal stress and the origins of agriculture in the Near East. Am Anthropol 93:46–69Google Scholar
  171. McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat XIII. Sr35-a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z Pflanzenzücht 92:1–14Google Scholar
  172. Metakovsky EV, Baboev SK (1992) Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. Theor Appl Genet 84:971–978PubMedGoogle Scholar
  173. Miège E (1924) Les formes marocaines de Triticum monococcum L. Bull de la Société des Sciences Naturelles du Maroc 4:154–160 (in French)Google Scholar
  174. Migui SM, Lamb RJ (2003) Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull Entomol Res 94:35–46Google Scholar
  175. Mihova S (1988) Sources of resistance to yellow rust (Puccinia striiformis West.) in the genus Triticum. Rastenievani Nauki 25:3–8 (in Bulgarian)Google Scholar
  176. Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am 2 in Triticum monococcum. Mol Genet Genom 275:193–203Google Scholar
  177. Miller NF (1991) The origins of plant cultivation in the Near East. In: Cowan CW, Watson PJ, Benco NL (eds) The origins of agriculture: an international perspective. University of Alabama Press, TuscaloosaGoogle Scholar
  178. Monneveux P, Zaharieva M, Rekika D (2001) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. Options Méditerranénnes 40:71–81Google Scholar
  179. Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647PubMedGoogle Scholar
  180. Mujeeb-Kazi A, Hettel GP (1995) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT Research Report 2:1–140Google Scholar
  181. Mujeeb-Kazi A, Rajaram S (2002) Transferring alien genes from related species and genera for wheat improvement. Bread wheat improvement and production. FAO, Roma, pp 199–215Google Scholar
  182. Müller KJ (1999) On-farm improvement and original seeds in Germany. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe—Conservation and sustainable utilization of plant genetic resources for food and agriculture. IPGRI, Rome, pp 84–86Google Scholar
  183. Müller KJ, Quendt U, Tovar J (2012) Darchau Getreidezüchtungsforschung, Entwicklungsbericht 2011/2012. Neu Darchau, Deutschland (in German)Google Scholar
  184. Multani DS, Dhaliwal HS, Singh P, Gill KS (1988) Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breeding 101:122–125Google Scholar
  185. Murray MA (2003) The plant remains. In: Peltenburg E (ed) The Colonisation and Settlment of Cyprus. Investigations at Kissonerga-Mylouthkia, 1976–1996. Lemba Archaeological Project, Cyprus III.1, Studies in Mediterranean Archaeology 70:59–71Google Scholar
  186. Nachit MM, Asbati A, Azrak M, Yunis Z, Saleh A (1995) Introgression of genes for abiotic and biotic stresses from wild relatives of durum wheat. Germplasm Program Cereals, Annual Report for 1995, pp 98–99Google Scholar
  187. Nemsadze N (1999) The role of the networks and associations in the production/diffusion of planting materials of old cultivars and landraces in Europe. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe: Conservation and Sustainable Utilization of PGRFA. IPGRI, Rome, pp 66–69Google Scholar
  188. Nesbitt M (1993) Ancient crop husbandry at Kaman-Kalehöyük: 1991 archaeobotanical report. In: Mikasa T (ed) Essays on Anatolian archaeology. Bull of the Middle Eastern Culture Center in Japan no 7. Harrassowitz, Wiesbaden, pp 75–97Google Scholar
  189. Nesbitt M (1994) Archaeobotanical research in the Merv Oasis. Iran 32:71–73Google Scholar
  190. Nesbitt M (1995) Plants and people in ancient Anatolia. Biblical Archaeol 58(2):68–81Google Scholar
  191. Nesbitt M, Hillman G, Peña-Chocarro L, Samuel D, Szabó TA (1996) Checklist for recording the cultivation and uses of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 234–246Google Scholar
  192. Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 40–99Google Scholar
  193. Neumann M, Sodkiewicz W, Skiebbe K (1985) On possibilities of genetic information transfer from Triticum monococcum to Triticale. Genet Polon 26:209–215Google Scholar
  194. Nurmi T, Nyström L, Edelmann M, Lampi AM, Piironen V (2008) Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9710–9715PubMedGoogle Scholar
  195. Oates D, Oates J (1976) Early irrigation agriculture in Mesopotamia. In: Sieveking G, Longworth IH, Wilson KE (eds) Problems in economic and social archaeology. Duckworth, London, pp 109–135Google Scholar
  196. Oliveira HR, Jones H, Leigh F, Lister DL, Jones MK, Peña-Chocarro L (2011) Phylogeography of einkorn landraces in the Mediterranean basin and Central Europe: population structure and cultivation history. Archaeol Anthropol Sci 3:327–341Google Scholar
  197. Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830Google Scholar
  198. O’Neill FH, Brynes A, Mandeno R, Rendell N, Taylor G, Seed M, Thompson GR (2004) Comparison of the effects of dietary plant sterol and stanol esters on lipid metabolism. NutritMetab Cardiovasc Dis 14:133–142Google Scholar
  199. Out W (2009) Sowing the seed? Human impact and plant subsistence in Dutch wetlands during the Late Mesolithic and Early and Middle Neolithic (5500–3400 cal BC). Archaeological Studies Leiden University 18. Leiden University Press, LeidenGoogle Scholar
  200. Özkan H, Brandolini A, Torun A, Altintas S, Eker S, Kilian B, Braun H, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: Buck HT, Nisi JE, Salomon N (eds) Wheat Production in Stressed Environments. Springer, Berlin, pp 455–462Google Scholar
  201. Padulosi S, Hammer K, Heller J (1996) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, RomeGoogle Scholar
  202. Parsa A (1980) Flora of Iran. Ministry of Sciences and Higher Education of Iran, TehranGoogle Scholar
  203. Pasternak R (1998) Investigations of botanical remains from Nevali C¸ ori PPNB, Turkey. In: Damania A, Valkoun J, Willcox G, Qualset C (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 170–177Google Scholar
  204. Paull JG, Pallotta MA, Langridge P, The TT (1994) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045PubMedGoogle Scholar
  205. Pavićević L (1973) Triticum monococcum in Yugoslavia. Byulleten’ Vsesoyuznogo Ordena Leninga Instituta Rastenievodstva Imeni NI Vavilova 31:84–86 (in Serbian)Google Scholar
  206. Pavićević L (1975) Tetraploid and diploid wheat in Montenegro and neighboring areas. Acta Biol 7:217–307Google Scholar
  207. Pavićević L (1982) Some positive features of local characteristics of diploid and tetraploid wheat. Genetika 14:1–11Google Scholar
  208. Peña-Chocarro L (1996) In situ conservation of hulled wheats species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 129–146Google Scholar
  209. Peña-Chocarro L, Zapata L, González Urquijo JE, Ibáez JJ (2009) Einkorn (Triticum monococcum L.) cultivation in mountain communities of the western Rif (Morocco): an ethnoarchaeological project. In: Fairnbairn AS, Weiss E (eds) From foragers to farmers. OxbowGoogle Scholar
  210. Péntek J, Szabó TA (1981) Az alakor (Triticum monococcum) Erdélyben. Ethnographia XCII 2–3:259–277 (in Hungarian)Google Scholar
  211. Péntek J, Szabó TA (1985) Plant kingdom and traditional human life in Calata Area (Kalotaszeg, Transylvania, Romania). Kriterion, Bucharest, pp 1–368 (in Hungarian)Google Scholar
  212. Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 101–119Google Scholar
  213. Pizzuti D, Buda A, d’Odorico A, d’Incà R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand J Gastroenterol 41:1305–1311PubMedGoogle Scholar
  214. Pogna NE, Gazza L, Corona V, Zanier R, Niglio A, Mei E, Palumbo M, Boggini G (2002) Puroindolines and kernel hardness in wheat species. In: Ng PKW, Wrigley CW (eds) Wheat quality elucidation. AACC, St.Paul, pp 155–169Google Scholar
  215. Potgieter GF, Marais GF, Du Toit F (1991) The transfer of resistance to the Russian Wheat aphid from Triticum monococcum L. to common wheat. Plant Breed 106:284–292Google Scholar
  216. Renfrew C (2002) The emerging synthesis: the archaeogenetics of farming/language dispersals and other spread zones. In: Bellwood P, Renfrew C (eds) Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 3–16Google Scholar
  217. Robinson DE (2007) Exploitation of plant resources in the Mesolithic and Neolithic of southern Scandinavia: from gathering to harvesting. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in southwest Asia and Europe. Left Coast Press, Walnut Creek, pp 359–374Google Scholar
  218. Rodríguez-Quijano M, Nieto-Taladriz MT, Carrillo JM (1997) Variation in B-LMW glutenin subunits in Einkorn wheats. Genet Resour Crop Evol 44:539–543Google Scholar
  219. Rouse MN, Jin Y (2011) Genetics of resistance to race TTKSK of Puccinia graminis f. sp. tritici in Triticum monococcum. Phytopathology 101:1418–1423PubMedGoogle Scholar
  220. Ruiz M, Aguiriano E, Fité R, Carrillo JM (2007) Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. subsp. monococcum) Genet Resour Crop Evol 54:1849–1860Google Scholar
  221. Sakamoto S, Kobayashi H (1982) Variation and geographical distribution of cultivated plants, their wild relatives and weeds native to Turkey, Greece and Romania. In: Tani Z (ed) Preliminary report of comparative studies on the agrico-pastoral peoples in Southwestern Eurasia. Kyoto Univ, Japan, pp 41–104Google Scholar
  222. Salimi A, Ebrahimzadeh H, Taeb M (2005) Description of Iranian diploid wheat resources. Genet Resour Crop Evol 52:351–361Google Scholar
  223. Sallares R (1991) The ecology of the ancient Greek World. Duckworth, LondonGoogle Scholar
  224. SanGiovanni JP, Chew EY, Clemons TE, Davis MD, Ferris FL, Gensler GR, Kurinij N, Lindblad AS, Milton RC, Seddon JM, Sperduto RD (2007) The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS report no 22. Arch Ophthalmol 125:1225–1232PubMedGoogle Scholar
  225. Saur L (1991) In search of sources of resistance to head blight caused by Fusarium culmorum in wheat and related species. Agronomie 11:535–541Google Scholar
  226. Schiemann E (1948) Weizen, Roggen, Gerste—Systematik, Geschichte und Verwendung. Gustav Fischer-Verlag, Jena (in German)Google Scholar
  227. Schiemann E (1951) Emmer in Troja. Berichte der Deutschen Botanischen Gesellschaft 64:155–170 (in German)Google Scholar
  228. Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456Google Scholar
  229. See DR, Giroux M, Gill BS (2004) Effect of multiple copies of puroiudoline genes on grain softness. Crop Sci 44:1248–1253Google Scholar
  230. Sharma BD (2008) The origin and history of wheat in Indian agriculture. In: Gopal L, Srivastava VC (eds) History of agriculture in India (up to c. 1200 AD). Concept Publishing Company, New Delhi, pp 126–142Google Scholar
  231. Sharma HC, Waines JG, Foster KW (1981) Variability in primitive and wild wheats for useful genetic characters. Crop Sci 21:555–559Google Scholar
  232. Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed Sci 59:671–678Google Scholar
  233. Sheedy JG, Thompson JP, Kelly A (2012) Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei. Euphytica 186:377–391Google Scholar
  234. Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147PubMedGoogle Scholar
  235. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555PubMedGoogle Scholar
  236. Singh K, Chhuneja P, Kaur S, Kaur S, Garg T, Tiwari VK, Rawat N, Bains NS, Dhaliwal HS, Keller B (2008) Triticum monococcum: A source of novel genes for improving several traits. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) Proceedings of the 11th international wheat genetic symposium. Brisbane, Australia, pp 295–298Google Scholar
  237. Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222Google Scholar
  238. Singh K, Ghai M, Garg M, Chhuneja P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301–312PubMedGoogle Scholar
  239. Sodkiewicz W (2002) Diploid wheat: Triticum monococcum as a source of resistance genes to preharvest sprouting of triticale. Cereal Res Commun 30:323–328Google Scholar
  240. Sodkiewicz W, Strzembicka A (2004) Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breed 123:39–42Google Scholar
  241. Sodkiewicz W, Strzembicka A, Apolinarska B (2008) Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breed 127:364–367Google Scholar
  242. Soshnikova EA (1990) Promising species of Triticum for the production of donors of resistance to stem rust of wheat. Nauchno-tekhnicheskii Byulleten’Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno-issledovatel’skogo Instituta Rastenievodstva Imeni N.I. Vavilova 197:4–5 (in Russian)Google Scholar
  243. Sotherton NW, Emden HFV (1982) Laboratory assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in three Triticum species and two modern wheat cultivars. Ann Appl Biol 101:99–107Google Scholar
  244. Stagnari F, Codianni P, Pisante M (2008) Agronomic and kernel quality of ancient wheats grown in central and southern Italy. Cereal Res Commun 36:313–326Google Scholar
  245. Stefanov B, Kitanov B (1962) Cultigen plants and cultigen vegetation in Bulgaria. Academic Press, Sofia (in Bulgarian)Google Scholar
  246. Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441PubMedGoogle Scholar
  247. Strãjeru S, Constantinovici D, Ibanescu M (2005) Wheat genetic resources in Romania. In: Lipman E, Maggioni L, Knüpffer H, Ellis R, Leggett JM, Kleijer G, Faberová I, Le Blanc A (eds) Cereal Genetic Resources in Europe. ECPGR/IPGRI, pp 171–74Google Scholar
  248. Suchowilska E, Wiwart M, Kandler W, Krska R (2012) A comparison of macro- and microelement concentrationsin the whole grain of four Triticum species. Plant Soil Environ 58:141–147Google Scholar
  249. Szabó TA (1976) On the borderline of natural science and ethnology. Kriterion Verlag, Bucaresti, pp 36–40Google Scholar
  250. Szabó TA (1981) Problems of genetic erosion in Transylvania, Romania. Kulturpflanze 29:47–62Google Scholar
  251. Szabó TA (1998) Problems of “on farm” prebreeding and “in situ” conservation of Triticum monococcum s.l. in the ABCD-Area in Europe. Bio Tár Electronic, Germoplasma, Studies on Genetic Resources 98 BTN 637. Accessed 3 Nov 2013
  252. Szabó TA. (1999) Genetic erosion, human environment and ethnobiodiversity studies. Preprint in: Bio Tár Electronic. Germoplasma BTN 766:1–16. Accessed 3 Nov 2013
  253. Szabó TA (2000) A historical survey of studies related to living einkorn (Triticum monococcum subsp. monococcum) populations found in Carpathian Basin. In: Gyulai F (ed) Preservation and use of agrobiodiversity, a lecture dedicated to A. Jánossy (1908–1975), the founder of the Hungarian Agrobotanical Institute and Genebank. Agr Mus Budapest, Inst Agrobot Tápiószele, pp 239–247 (in Hungarian)Google Scholar
  254. Szabó TA (2003) Ethnobotanical, plant genetic resource and prebreeding studies on Carpathian einkorns (Triticum monococcum L. subsp. monococcum): 1. A chronological survey. In: Ökológiai gazdálkodásra alkalmas gabonafélék kutatása hagyományos és molekuláris módszerekkel. BioTár Electronic, Germoplazma and Haynaldia series, BTN 1000 (in Hungarian). Accessed 3 Nov 2013
  255. Szabó TA, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 2–40Google Scholar
  256. Szabó TA, Márton A (1980) The traces of the einkorn. An ancient wheat species in the light of modern research. Müvelödés, Bucharest 33, 1:35–44, 2:45–46 (in Hungarian) Művelődés, Bucharest, 33, 1: 35–44, 2: 45–46Google Scholar
  257. Taddei F, Gazza L, Conti S, Muccilli V, Foti S, Pogna NE (2009) Starch-bound 2S proteins and kernel texture in einkorn, Triticum monococcum ssp. monococcum. Theor Appl Genet 119:1205–1212PubMedGoogle Scholar
  258. Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143Google Scholar
  259. Téllez Molina R, Alonso Peña M (1952) Los trigos de la Ceres Hispánica de Lagasca y Clemente. Instituto Nacional de Investigaciones Agrarias, Madrid (in Spanish)Google Scholar
  260. Tengberg M (1999) Crop husbandry at Miri Qalat, Makran, SW Pakistan (4000-2000 BC). Veg Hist Archaeobot 8:3–12Google Scholar
  261. Terrell EE, Peterson PM (1993) Caryopsis morphology and classification in the Triticeae (Pooideae: Poaceae). Smithonian Contributions to Botany, Number 83. Smithsonian Institution Press, Washington DC, 25 pGoogle Scholar
  262. The TT (1973) Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nat New Biol 241:256PubMedGoogle Scholar
  263. The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biol Sci 32:115–125Google Scholar
  264. Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque OR, MacRitchie F, Dubcovsky J (2002) Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. J Cereal Sci 36:9–18Google Scholar
  265. Tsolova T (2012) Bulgarians cultivating ancient einkorn grain. Radovo, Bulgaria, (Reuters) Accessed 3 Nov 2013
  266. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301PubMedGoogle Scholar
  267. Vaccino P, Becker HA, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genom 281:289–300Google Scholar
  268. Valkoun J, Kucerova D, Bartos P (1986) Transfer of leaf rust resistance from Triticum monococcum L. to hexaploid wheat. Z für Pflanzenzücht 96:271–278Google Scholar
  269. Vallega V (1977) Validità del Triticum monococcum nel miglioramento genetico del frumento. Sementi Elette 23:3–8 (in Italian)Google Scholar
  270. Vallega V (1992) Agronomical performance and breeding value of selected strains of diploid wheat, Triticum monococcum. Euphytica 61:3–23Google Scholar
  271. Vallega V (1996) The quality of Triticum monococcum L. in perspective. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 214–222Google Scholar
  272. van Slageren MW(1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, the Netherlands, International Center for Agricultural research in dry areas (ICARDA), Aleppo, Syria, 512 pGoogle Scholar
  273. van Zeist W (1981) Plant remains from Cape Andreas-Kastros (Cyprus). In: Le Brun A (ed) Un site néolithique precéramique en Chypre: cap Andreas-Kastros. Editions ADPF, Paris, pp 95–99Google Scholar
  274. van Zeist W, de Roller GJ (1992) The plant husbandry of Aceramic Cayönü. SE Turkey. Palaeohistoria 33(34):65–96Google Scholar
  275. Vasu K, Singh H, Singh S, Chhuneja P, Dhaliwal HS (2001) Microsatellite marker linked to a leaf rust resistance gene from Triticum monococcum L. transferred to bread wheat. J Plant Biochem Biotechnol 10:127–132Google Scholar
  276. Vavilov NI (1957) Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, l’na i ikh ispolzovanie v selektzii. Opyt agroekologicheskogo obozreniya vazhneishikh polevykh kultur. (World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. Agroecological survey of the principal field crops). USSR Academy of Science Press, Moscow-Leningrad (in Russian)Google Scholar
  277. Vavilov NI (1964) Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, i na ikh ispolzovanie v selektzii. Pshenitza. (World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. Wheat.) Nauka Press, Moscow-Leningrad (in Russian)Google Scholar
  278. Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor Appl Genet 84:835–838PubMedGoogle Scholar
  279. Vittozi L, Silano V (1976) The phylogenies of protein α-amylase inhibitors from wheat seed and the speciation of polyploid wheats. Theor Appl Genet 48:279–284Google Scholar
  280. Waines JG (1996) Molecular characterization of einkorn wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 195–199Google Scholar
  281. Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76PubMedGoogle Scholar
  282. Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610PubMedGoogle Scholar
  283. Wieser H, Mueller KJ, Koehler P (2009) Studies on the protein composition and baking quality of einkorn lines. Eur Food Res Technol 229:523–532Google Scholar
  284. Wieser H (2000) Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur Food Res Technol 211:262–268Google Scholar
  285. Willcox G (2005) The distribution, natural habitats and the availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veg Hist Archaeobot 14:534–541Google Scholar
  286. Williams PC (1986) The influence of chromosome number and species on wheat hardness. Cereal Chem 63:56–58Google Scholar
  287. Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nut 63:813–820Google Scholar
  288. Wyn Jones RG, Gorham J, McDonnell E (1984) Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 189–203Google Scholar
  289. Xian-Guang Y, Jin-Yu F, Chuan-Liang D (2011) Molecular cloning of a novel GSK3/shaggy-like gene from Triticum monococcum L. and its expression in response to salt, drought and other abiotic stresses. Af J Biotechnol 10:4065–4071Google Scholar
  290. Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477PubMedGoogle Scholar
  291. Yamaleev AM, Dolotovskii IM, Noikonov VI (1989) Relationship between resistance of wheat root rots and genome composition. Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel’skhozyaistvennykh Nauk Imeni V.I. Lenina 6:4–6Google Scholar
  292. Yamashita K, Tanaka M, Koyama M (1957) Studies on the flour quality in Triticum and Aegilops. Seiken Zito 8:20–26Google Scholar
  293. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down regulated by vernalization. Science 303:1640–1644PubMedGoogle Scholar
  294. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268PubMedGoogle Scholar
  295. Yu BS, Sun GR (1995) Preliminary study of several spring wheat varieties for resistance to Septoria diseases. Crop Genet Resour 1:27–29 (in Chinese)Google Scholar
  296. Zaharieva M (1993) Aegilops species in Bulgaria—their ecogeography and distribution. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, pp 369–374Google Scholar
  297. Zaharieva M, Geleta Ayana N, Al Hakimi A, Misra SC, Monneveux P (2010) Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet Resour Crop Evol 57:937–962Google Scholar
  298. Zanini B, Ferraresi A, Lanzarotto F, Ricci C, Villanacci V, Lnzini A (2012) Clinical, serological and histological effect of daily administration of Triticum monococcum in celiac patients on gluten free diet. J Am Gastroenterol 142:272–273Google Scholar
  299. Zanini B, Petroboni B, Not T, Pogna N, Lanzani A (2011) Is Triticum monococcum a coeliac-safe wheat? A phase II, single blind, cross-over study on the effect of acute administration on intestinal permeability. Gut 60:A86–A87. doi: 10.1136/gut.2011.239301.179 Google Scholar
  300. Zhukovsky PM (1951) Türkiyénin zirai bünyesi (Agricultural structure of Turkey). Türkiye leker Fabrikalari Nesriyati No 20 (in Turkish)Google Scholar
  301. Zhukovsky PM (1964) Kulturnye rasteniya i ikh sorodichi (Cultivated plants and their relatives). Kolos, Leningrad (in Russian)Google Scholar
  302. Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.National Agricultural University La Molina (UNALM)LimaPeru
  2. 2.International Potato Center (CIP)LimaPeru

Personalised recommendations