Skip to main content
Log in

Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture

  • Notes on Neglected and Underutilized Crops
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The first cultivated wheat, cultivated einkorn (Triticum monococcum L. subsp. monococcum), was domesticated in South-East Turkey during the Pre-Pottery Neolithic period. It then spread to the Middle-East, the Balkans and Caucasus, Turkmenistan, Central and Mediterranean Europe, North-Africa, and finally to Western and Northern Europe. In all these regions, it played an important role in the development of agriculture and was cultivated for several centuries before being replaced by free-threshing wheats. Today, cultivated einkorn is only present in isolated, mountainous areas of a few countries. However, there is renewed interest for this crop due to the nutritional qualities of its grain, its adaptation to low-input agriculture and high level of resistance to pests and diseases that represent advantages for organic farming. Cultivated einkorn is also a valuable reservoir of genes for wheat improvement. Its utilization, limited by its hulledness, low yield and especially by a poor knowledge of its diversity and its low crossability with bread and durum wheat, is expected to increase in the future, particularly with the need for wheat breeding to face newly emerging diseases through the use of genetic resistances. Considering these perspectives, the present review attempts to analyse the current and historical importance of einkorn cultivation and utilization in wheat breeding, tracing back to its origin and diffusion. The main traits of resistance to pest and diseases, and the nutritional qualities and technological characteristics of the grain are described. Einkorn genetic resources diversity exploration is reviewed and successful examples of introgression of useful einkorn traits into cultivated wheat are reported. Lastly, perspectives of einkorn cultivation development in low-input agriculture and use for wheat enhancement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Aal ESM, Hucl P, Sosulski FW (1995) Compositional and nutritional characteristics of spring einkorn and spelt wheats. Cereal Chem 72:621–624

    CAS  Google Scholar 

  • Acquistucci R, D’Egidio MG, Vallega V (1995) Amino acid composition of selected strains of diploid wheat, Triticum monococcum L. Cereal Chem 72:213–216

    CAS  Google Scholar 

  • Adu MO, Sparkes DL, Parmar A, Yawson DO (2011) Stay green in wheat: comparative study of modern bread wheat and ancient wheat cultivars. ARPN J Agric Biol Sci 6:16–24

    Google Scholar 

  • Akhalkatsi M, Ekhvaia J, Asanidze Z (2012) Diversity and genetic erosion of ancient crops and wild relatives of agricultural cultivars for food: implications for nature conservation in Georgia (Caucasus). In: Tiefenbacher J (ed) Perspectives on nature conservation—patterns, pressures and prospects. InTech, pp 51–92

  • Al Hakimi A, Monneveux P (1997) Utilization of ancient tetraploid wheat species for drought tolerance in durum wheat (Triticum durum Desf.). In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Aleppo, ICARDA, pp 273–279

    Google Scholar 

  • Alvarez JB, Moral A, Martín LM (2006) Polymorphism and genetic diversity for the seed storage proteins in Spanish cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum). Genet Resour Crop Evol 53:1061–1067

    CAS  Google Scholar 

  • Anker CC, Buntjer J, Niks R (2001) Morphological and molecular characterisation confirm that Triticum monococcum s.s. is resistant to wheat leaf rust. Theor Appl Genet 103:1093–1098

    Google Scholar 

  • Anker CC, Niks RE (2001) Prehaustorial resistance to wheat leaf rust in Triticum monococcum (s.s.). Euphytica 117:209–215

    Google Scholar 

  • Arranz Otaegui A (2011) Analysis of archaeological plant macroremains from Tell Qarassa North (Syria): an example of early agriculture and woodland use in the Near East. Quat Stud Environ Changes Hum Fingerpr 1:3–17

    Google Scholar 

  • Auricchio S, De Ritis G, De Vincenzi M, Occorsio P, Silano V (1982) Effects of gliadin derived peptides from bread and durum wheats on small intestine cultures from rat fetus and coeliac children. Pediatric Res 16:1004–1010

    CAS  Google Scholar 

  • Aykroyd WR, Doughty J (1970) Wheat in human nutrition. FAO Nutritional Studies, Rome

    Google Scholar 

  • Bai D, Knott DR, Zale JM (1998) The inheritance of leaf and stem rust resistance in Triticum monococcum L. Can J Plant Sci 78(2):223–226

    Google Scholar 

  • Bakels CC (1978) Four Linearbandkeramik settlements and their environment: a paleoecological study of Sittard, Stein, Elsloo and Hienheim, Analecta Praehistorica Leidensia 11

  • Bakels CC, Rousselle R (1985) Restes botaniques et agriculture du Néolithique Ancien en Belgique et aux Pays-Bas. Helimum 25:37–57 (in French)

    Google Scholar 

  • Ball TB, Brotherson DJ, Gardner SJ (1993) A typological and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Can J Bot 71:1182–1192

    Google Scholar 

  • Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Gramineae). Am J Bot 86:1615–1623

    CAS  PubMed  Google Scholar 

  • Ballouche A, Marinval P (2003) Données palynologiques et carpologiques sur la domestication des plantes et l’agriculture dans le Néolithique ancien du Maroc septentrional (Site de Kaf Taht el Ghar). Revue d’ Archéométrie 27:49–54 (in French)

    Google Scholar 

  • Barulina EI (1924) Triticum monococcum as an admixture to cereal crops in the Crimea. Bull Appl Bot Plant Breed (Leningrad) 14:136–139

    Google Scholar 

  • Bar-Yosef O (2002) The Upper Paleolithic revolution. Ann Rev Anthropol 31:363–393

    Google Scholar 

  • Bartl K, Űveges V (2004) Alakor (Triticum monococcum L. subsp. monococcum) gyomelnyomó hatása szabadföldi kisérletekben, különös tekintettel a parlagfûre (Ambrosia artemissiifolia L.). Magyar Alakorkutató Munkacsoport Második Konferenciája, MTA VEAB, Limnológia Tanszék (in Hungarian)

  • Baum BR, Bailey LG (2004) The origin of the A genome donor of wheats (Triticum: Poaceae)—a perspective based on the sequence variation of the 5S DNA gene units. Genet Resour Crop Evol 51:183–196

    CAS  Google Scholar 

  • Bhagyalakshmi K, Vinod KK, Kumar M, Arumugachamy S, Prabhakaran AJ, Raveendran TS (2008) Interspecific hybrids from wild × cultivated Triticum crosses-a study on the cytological behaviour and molecular relations. J Crop Sci Biotech 11:257–262

    Google Scholar 

  • Biffen RH (1907) Studies in the inheritance of disease resistance. J Agric Sci 2:109–128

    Google Scholar 

  • Blanco A, Giorgi B, Perrino P, Simeone R (1990) Risorse genetiche e miglioramento della qualita’ del frumento duro. Agricoltura e Ricerca 114:41 (in Italian)

  • Blaringhem L (1914) Sur la production d’hybrides entre l’engrain (Triticum monococcum L.) et différents blés cultivés. Comptes Rendus Acad Agric Paris 158:346 (in French)

    Google Scholar 

  • Bochev B (1993) Cytogenetic studies of wheat T. aestivum L. Publishing House of Bulgarian Academy of Sciences, Sofia, Bulgaria (in Bulgarian)

  • Bor NL (1970) Gramineae. In: Rechinger KH (ed) Flora Iranica 70:203–211

  • Borghi B, Castagna R, Corbellini M, Heun M, Salamini F (1996) Breadmaking quality of einkorn wheat (Triticum monococcum subsp. monococcum). Cereal Chem 73:208–214

    CAS  Google Scholar 

  • Borojevič S (1956) A note about the new dates for recent cultivation of Triticum monococcum and Triticum dicoccum in Yugoslavia. Wheat Inf Serv 4:1

    Google Scholar 

  • Borza A (1945) Alacul (Triticum monococcum) la Români. Bul Grăd Bot Cluj 25:93–119 (in Romanian, with French summary)

  • Brandolini A, Hidalgo A, Moscaritolo S (2008) Chemical composition and pasting properties of einkorn (Triticum monococcum L. subsp. monococcum) whole meal flour. J Cereal Sci 47:599–609

    CAS  Google Scholar 

  • Brandolini A, Hidalgo A, Vaccino P, Plizzari L (2013) Phenotypic variation of a Triticum monococcum L. core collection. EUCARPIA Genetic Resources section meeting, 11-13 June 2013, Alnarp, Sweden. http://www.nordgen.org/ngdoc/nordgen/Eucarpia/Posters/p2_10_andrea_Brandolini.pdf. Accessed 3 Nov 2013

  • Brandolini A, Vaccino P, Boggini G, Ozkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305

    CAS  PubMed  Google Scholar 

  • Buerli M (2006) Farro in Italy. A desk-study. GFU, Rome, Italy. http://www.cropsforthefuture.org/publication/strategic-document/farro_in_italy.pdf. Accessed 3 Nov 2013

  • Bullrich L, Appendino ML, Tranquilli G, Lewis S, Dubcovsky J (2002) Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m). Theor Appl Genet 105:585–593

    CAS  PubMed  Google Scholar 

  • Buschan G (1895) Vorgeschichtliche Botanik der Kultur- und Nutzpflanzen der altenWelt auf Grund prähistorischer Funde. Krens JV Verlag, Breslau

    Google Scholar 

  • Butnaru G, Sarac I, Blidar A, Holly L, Mar I (2003) Morpho-agronomic variability of Triticum monococcum L. landraces in the Timisoara area. ISIRR, Section IV, Hunedoara, Romania, pp 167–172

  • Byrt CS, Platten DJ, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cadle MM, Murray TD (1997) Identification of resistance to Pseudocercosporella herpotrichoides in Triticum monococcum. Plant Dis 81:1181–1186

    Google Scholar 

  • Caillaud CM, Niemeyer HM (1996) Possible involvement of phloem sealing system in the acceptance of a plant as host by an aphid. Experientia 52:927–931

    CAS  Google Scholar 

  • Cakmak I, Cakmak O, Eker S, Ozdemir A, Watanabe N, Braun HJ (1999) Expression of high zinc efficiency of Aegilops tauschii and Triticum monococcum in synthetic hexaploid wheats. Plant Soil 215:203–209

    CAS  Google Scholar 

  • Castagna R, Borghi B, Bassinger G, Salamini F (1993) Induction and characterization of Triticum monococcum mutants affecting plant ear and morphology. J Genet Breed 47:127–138

    Google Scholar 

  • Castagna R, Borghi B, Di Fonzo N, Heun M, Salamini F (1995) Yield and related traits of einkorn (T. monococcum subsp. monococcum) in different environments. Eur J Agron 4:371–378

    Google Scholar 

  • Castagna R, Borghi B, Heun M, Salamini F (1996) Integrated approach to einkorn wheat breeding. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 183–192

    Google Scholar 

  • Castagna R, Maga G, Perenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationship of einkorn wheats. Theor Appl Genet 88:818–823

    CAS  PubMed  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance gene in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    CAS  PubMed  Google Scholar 

  • Ciaffi M, Dominici L, Lafiandra D (1997) Gliadin polymorphism in wild and cultivated einkorn wheats. Theor Appl Genet 94:68–74

    CAS  PubMed  Google Scholar 

  • Corbellini M, Empilli S, Vaccino P, Brandolini A, Borghi B, Heun M, Salamini F (1999) Einkorn characterisation for bread and cookie production in relation to protein subunit composition. Cereal Chem 76:727–733

    CAS  Google Scholar 

  • Cox TS, Harrell LG, Chen P, Gill BS (1991) Reproductive behavior of hexaploid/diploid wheat hybrids. Plant Breeding 107:105–118

    Google Scholar 

  • Dalby A (2003) Food in the Ancient World: From A to Z. Routledge, London

    Google Scholar 

  • Damania AB, Hakim S, Moualla MY (1992) Evaluation of variation in T. dicoccum for wheat improvement in stress environment. Hereditas 116:163–166

    Google Scholar 

  • Datta KS, Kumar A, Varma SK, Angrish R (1995) Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. J Plant Nutrit 18:2199–2212

    CAS  Google Scholar 

  • de Moulins D (1993) Les restes de plantes carbonisées de Çafer Höyük. Cahiers de l’Euphrate 7:191–234 (in French)

    Google Scholar 

  • de Moulins D (2000) Abu Hureyra 2: plant remains from the Neolithic. In: Moore AMT, Hillman GC, Legge AJ (eds) Village on the Euphrates: from foraging to farming at Abu Hureyra. Oxford University Press, New York, pp 399–422

    Google Scholar 

  • D’Egidio MG, Nardi S, Vallega V (1993) Grain, flour, and dough characteristics of selected strains of diploid wheat, Triticum monococcum L. Cereal Chem 70:298–303

    Google Scholar 

  • D’Egidio MG, Vallega V (1994) Bread baking and dough mixing quality of diploid wheat Triticum monococcum L. Industrie Alimentari 4:6

    Google Scholar 

  • Deloye H, Laby H (1948) Les varietés des céréales cultivées en Algérie. Agria, Alger (in French)

    Google Scholar 

  • Dhaliwal HS, Chhuneja P, Singh I, Ghai M, Goel RK, Garg M, Keller B, Röder M, Singh K (2003) Triticum monococcum - a novel source for transfer and exploitation of disease resistance in wheat. In: Proceedings of the 10th international wheat genetics symposium, Paestum, Italy, pp 346–349

  • Di Pietro JP, Caillaud CM, Chaubet B, Pierre JS, Trottet M (1998) Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat accessions: multivariate analysis of agronomic data. Plant Breed 117:407–412

    Google Scholar 

  • Diederichsen A, Rozhkov RV, Korzhenevsky VV, Boguslavsky RL (2010) Ukrainian-Canadian resources expedition in the Crimea in 2009. Annals of the Nikitsky Botanical Garden 101:5–13 (in Russian)

    Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udachin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of cultivated plants, vol 1. Kolos, Leningrad (in Russian)

    Google Scholar 

  • Dorofeev VF, Udachin RA, Semenova LV, Novikova MV, Grazhdaninova OD, Shitova IP, Merezhko AF, Filatenko AA (1987) World wheat. Agropromizdat, Leningrad (in Russian)

    Google Scholar 

  • Dubcovsky J, Luo MC, Dvořák J (1999) Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Phl locus. Proc Natl Acad Sci USA 92:6645–6649

    Google Scholar 

  • Dubcovsky J, Luo MC, Zhon GY, Bransteitter R, Desai A, Kilian A, Kleinhofs A, Dvořák J (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983–999

    CAS  PubMed  Google Scholar 

  • Ducellier L (1921) Amélioration des céréales d’Algérie. Revue Agricole de l’Afrique du Nord 14 (in French)

  • Ducellier L (1930) Espèces et variétés de céréales cultivées en Algérie. Gouvernement général de l’Algérie, Alger (in French)

    Google Scholar 

  • Dyck PL, Bartos P (1994) Attempted transfer of leaf rust resistance from Triticum monococcum and durum wheat to hexaploid wheat. Can J Plant Sci 74:733–736

    Google Scholar 

  • El Bouhssini M, Lhaloui S, Hatchett JH, Naber N (1997) Nouveaux gènes de résistance efficaces contre la mouche de Hesse (Diptère: Cécidomyiidae) au Maroc. Al Awamia 96:55–63 (in French)

    Google Scholar 

  • Elmazov E (2012) The bread of the origins. Einkorn, the wild wheat of Antiquity. Heliopol, Bulgaria (in Bulgarian)

  • Empilli S, Castagna R, Brandolini A (2000) Morpho-agronomic variability of the diploid wheat Triticum monococcum L. Plant Genet Resour Newsl 124:36–40

    Google Scholar 

  • Engert N, Honermeier B (2011) Characterization of grain quality and phenolic acids in ancient wheat species (Triticum sp.). J Appl Bot Food Qual 84:33–39

    CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed  Google Scholar 

  • Favret EA, Cervetto JL, Solari R, Bolondi A, Manghers L, Boffi A, Ortiz J (1987) Comparative effect of diploid, tetraploid and hexaploid wheat on the small intestine of coeliac patients. In: Proc Eight Meeting Latin-American Soc Pediatr Gastroenterology and Nutrition, San Paolo, Brazil (in Spanish)

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Mapbased isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    CAS  PubMed  Google Scholar 

  • Filatenko A, Hammer K (1997) New descriptions of hulled wheats on the infraspecific level. Genet Resour Crop Evol 44:285–288

    Google Scholar 

  • Filatenko AA, Grau M, Knüpffer H, Hammer K (2002) Discriminating characters of diploid wheat species. In: Hernandez P, Moreno MT, Cubero JI, Martin A (eds), Triticeae IV. Proceedings of 4th Internat Triticeae Sympos, Córdoba, Spain, pp 153–156

  • Filatenko AA, Kurkiev UK (1975) A new species - Triticum sinskajae A. Filat et Kurk. Trudi po Prikladnoi Botanike. Genetike i Selektsii 54:239–241 (in Russian)

    Google Scholar 

  • Flaksberger KA (1935) Flora of cultivated plants, vol. I. Cereals, Wheat, vol I. State Agricultural Publishing Company, Moscow (in Russian)

    Google Scholar 

  • Frégeau-Reid J, Abdel-Aal ESM (2005) Einkorn: a potential functional wheat and genetic resource. In: Wood P, Abdel Aal ESM (eds) Speciality grains for food and feed. American Association of Cereal Chemists Inc, Minnesota, pp 37–62

    Google Scholar 

  • Frisoni M, Vallega V, D’Egidio MG, Corazza GR, Gasbarrini G (1995) In vitro toxicity of gluten of three wheat species on the intestinal mucosa of coeliac patients. In: Abstr ICC Conf on the role of cereals in future nutrition, Vienna, Austria, p 8

  • Fuller DQ (2006) Agricultural origins and frontiers in South Asia: a working synthesis. J World Prehist 20:1–86

    Google Scholar 

  • Fuller DQ, Stevens CJ (2009) Agriculture and the development of complex societies: an archaeobotanical agenda. In: Fairbairn A, Weiss E (eds) From foragers to farmers: papers in honour of Gordon C. Hillman. Oxbow Books, Oxford, pp 37–57

    Google Scholar 

  • Garrard A (1999) Charting the emergence of cereal and pulse domestication in south-east Asia. Env Archaeol 4:67–86

    Google Scholar 

  • Garrard A, Baird D, Colledge S, Martin L, Wright K (1994) Prehistoric environment and settlement in the Azraq Basin: an interim report on the 1987 and 1988 excavation seasons. Levant 26:73–109

    Google Scholar 

  • Gerechter-Amitai ZK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20:281–285

    Google Scholar 

  • Gill RS, Dhaliwal HS, Multani DS (1988) Synthesis and evaluation of Triticum durum-T. monococcum amphiploids. Theor Appl Genet 75:912–916

    Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40:370–374

    CAS  Google Scholar 

  • Goletti T, Lio N, di Pace C, Osler R, Porceddu E, Scarascia Mugnozza GT (1990) Comparison of techniques for diagnosing barley yellow dwarf virus (BYDV) in Triticeae for identification of sources of genetic resistance. Revista di Agricoltura Subtropicale e Tropicale 84:367–375

    Google Scholar 

  • Golovnina KA, Kondratenko EY, Blinov AG, Goncharov NP (2010) Molecular characterization of vernalization loci VRN1 in wild and cultivated wheats. BMC Plant Biol 10:168

    PubMed Central  PubMed  Google Scholar 

  • Goncharov NP (2012) Sravnitelnaya genetika pshenitz i ikh sorodichey (Comparative genetics of wheats and their related species). Academic Publishing House “Geo”, Novosibirsk, Russia (in Russian with English Summary) p 523

  • Gorham J, Bristol A, Young EM, Wyn Jones RG (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor Appl Genet 82:729–736

    CAS  PubMed  Google Scholar 

  • Grausgruber H, Preinerstorfer B, Geleta N, Leopold L, Eticha F, Kandler W, Schuhmacher R, Bointner H, Siebenhandl-Ehn S (2010) Hulled wheats in organic agriculture - Agronomic and nutritional considerations. In: Dzyubenko N.I. (ed) 8th International Wheat Conference, 1–4 Jun, 2010, St. Petersburg, Russia, Abstracts of oral and poster presentations, N.I. Vavilov Research Institute of Plant Industry (VIR), St. Petersburg, pp 41–42

  • Gul Kazi A, Rasheed A, Bashir F, Bux H, Aziz Napar A, Mujeeb-Kazi A (2011) A-genome based diversity status and its practical utilization in wheat. Ann Wheat Newsl 57:92–114

    Google Scholar 

  • Gunda B (1983) Cultural ecology of old cultivated plants in the Carpathian area. Ethnologia Europaea 13(2):145–179

    Google Scholar 

  • Guzmán C, Caballero L, Alvarez JB (2009) Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum) as determined by morphological traits and waxy proteins. Genet Resour Crop Evol 56:601–604

    Google Scholar 

  • Guzmán C, Caballero L, Martín MA, Alvarez JB (2012) Molecular characterization and diversity of the Pin a and Pin b genes in cultivated and wild diploid wheat. Mol Breed 30:69–78

    Google Scholar 

  • Guzy MR, Ehdaie B, Waines JG (1989) Yield and its components in diploids, tetraploid and hexaploid wheats in diverse environments. Ann Bot 64:635–642

    Google Scholar 

  • Hajnalová M, Dreslerová D (2010) Ethnobotany of einkorn and emmer in Romania and Slovakia: towards interpretation of archaeological evidence. Památky Archeologické CI:169–202

  • Hajnalová M, Eliáš P, Pažinová N (2007) Ancient crop in modern world: traditional non-industrial cultivation methods and use of einkorn (Triticum monococcum) in modern Transylvania (Romania). In: Traditional Agroecosystems, Proceedings of the 1st International Conference and Satelite Workshop, Slovenská Poľnohospodárska Univerzita v Nitre, Nitra, pp 122–126

  • Hammer K, Filatenko AA, Korzun V (2000) Microsatellite markers - a new tool for distinguishing diploid wheat species. Genet Resour Crop Evol 47:497–505

    Google Scholar 

  • Hammer K, Filatenko AA, Pistrick K (2011) Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol 58:3–10

    Google Scholar 

  • Hammer K, Khoshbakht K (2005) Towards a “red list” for crop plants species. Genet Resour Crop Evol 52:249–265

    Google Scholar 

  • Hammer K, Laghetti G, Pignone D, Pistrick K, Xhuveli L, Perrino P (1994) Emergency collecting missions to Albania 1993. Plant Genet Resour Newsl 97:59–62

    Google Scholar 

  • Hammer K, Neumann M, Kison HU (1996) Pre-breeding work on einkorn—cooperation between genebank and breeders. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 198–202

    Google Scholar 

  • Hammer K, Perrino P (1984) Further information on farro (Triticum monococcum L. and T. dicoccon Schrank) in South Italy. Kulturpflanze 32:143–151

    Google Scholar 

  • Hammer K, Perrino P (1995) Plant genetic resources in South Italy and Sicily: studies towards in situ and on farm conservation. Plant Genet Resour Newsl 103:19–23

    Google Scholar 

  • Hanchinal RR, Yenagi NB, Bhuvaneswari G, Math KK (2005) Grain quality and value addition of emmer wheat. University of Agricultural Sciences Dharwad, Dharwad 63

    Google Scholar 

  • Harris DR, Gosden C (1996) The beginnings of agriculture in Central Asia. In: Harris DR (ed) The origins and spread of agriculture and pastoralism in Eurasia. UCL Press, London, pp 370–389

    Google Scholar 

  • Harris DR, Masson VM, Berezin YE, Charles MP, Gosden C, Hillman GC, Kasparov AK, Korobkova GF, Kurbansakhatov K, Legge AJ, Limbrey S (1993) Investigating early agriculture in Central Asia: new research at Jeitun, Turkmenistan. Antiquity 67:324–338

    Google Scholar 

  • Helbaek H (1969) Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. In: Hole F, Flannery KV, Neely JA (eds) Prehistory and human ecology of the Deh Luran Plain, Musuem of Anthropology. University of Michigan, Ann Arbor, pp 383–426

    Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagana R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Gazza L (2008) Influence of steaming treatment on chemical and technological characteristics of einkorn (Triticum monococcum L. subsp. monococcum) wholemeal flour. Food Chem 111:549–555

    CAS  Google Scholar 

  • Hidalgo A, Brandolini A, Ratti S (2009) Influence of genetic and environmental factors on selected nutritional traits of Triticum monococcum. J Agric Food Chem 57:6342–6348

    CAS  PubMed  Google Scholar 

  • Hillman G, Davies S (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J World Prehist 4:157–219

    Google Scholar 

  • Hjelmqvist H (1963) Zur Geschichte des Einkorns and des Emmers in Schweden. Bot Notiser 116:487–494 (in German)

    Google Scholar 

  • Hjelmqvist H (1966) Some notes on the old wheat species of Gotland. Hereditas 56:382–393

    Google Scholar 

  • Holden TG (2002) The food remains from the colon of the Tyrolean ice man. In: Dobney K, O’Connor T (eds) Bones and the man: Studies in honour of Don Brothwell. Oxbow Books, Oxford, pp 35–40

    Google Scholar 

  • Holubec V (1999) Principal collecting needs in Europe. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe: Conservation and sustainable utilization of plant genetic resources for food and agriculture. IPGRI, Braunschweig, pp 145–155

    Google Scholar 

  • Hopf M (1983) The plants found at Jericho. In: Kenyon KM, Holland TA (eds) Excavations in Jericho. Br School Archeol Jerusalem, London, pp 580–621

    Google Scholar 

  • Hovsepyan R, Willcox G (2008) The earliest finds of cultivated plants in Armenia: evidence from charred remains and crop processing residues in pisé from the Neolithic settlements of Aratashen and Aknashen. Veg His Archaeobot 17:63–71

    Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em. Thell.). Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    CAS  Google Scholar 

  • Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang SX, Sirikhachornkit A, Faris JD, Su XJ, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 4:805–820

    Google Scholar 

  • Humphries CJ (1980) Triticum L. In: Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webbs DA (eds) Flora Europea, vol 5., Alismataceae to Orchidaceae. Cambridge University Press, Cambridge, pp 202–203

  • Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586

    Google Scholar 

  • Igrejas G, Guedes-Pinto H, Carnide V, Branlard G (1999) The high and low molecular weight glutenin subunits and ω-gliadin composition of bread and durum wheats commonly grown in Portugal. Plant Breed 118:297–302

    CAS  Google Scholar 

  • Jacobs AS, Pretorius JA, Kloppers FJ, Cox TS (1996) Mechanisms associated with wheat leaf rust resistance derived from Triticum monococcum. Phytopathology 86:588–595

    Google Scholar 

  • Jakubziner MM (1969) Immunity of different wheat species. Agric Biol 4:837–847 (in Russian)

    Google Scholar 

  • James RA, Davenport R, Munns R (2006) Physiological characterisation of two genes for Na + exclusion in wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Pretorius ZA (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Google Scholar 

  • Jing HC, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genom 10:458–465

    Google Scholar 

  • Jing HC, Kornyukhin D, Kanyuka K, Orford S, Zlatska A, Mitrofanova OP, Koebner R, Hammond-Kosack K (2007) Identification of variation in adaptively important traits and genome wide analysis of trait-marker associations in Triticum monococcum. J Exp Bot 58:3749–3764

    CAS  PubMed  Google Scholar 

  • Jing HC, Lovell D, Gutteridge R, Jenk D, Kornyukhin D, Mitrofanova OP, Kema GHJ, Hammond-Kosack KE (2008) Phenotypic and genetic analysis of the Triticum monococcum: Mycosphaerella graminicola interaction. New Phytolog 179:1121–1132

    Google Scholar 

  • Jing W, Demcoe AR, Vogel HJ (2003) Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185:4938–4947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones G, Wardle K, Halstead P, Wardle D (1986) Crop storage at Assiros. Sci Am 254:96–103

    Google Scholar 

  • Jones MK, Allaby RG, Brown TA (1998) Wheat domestication. Science 279:302–303

    CAS  Google Scholar 

  • Jørgensen G (1981) Cereals from Sarup with some remarks on plant husbandry in Neolithic Denmark. Kuml 1981:221–231 (in Danish)

  • Karagöz A (1996) Agronomic practices and socioeconomic aspects of emmer and einkorn cultivation in Turkey. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 172–177

    Google Scholar 

  • Kaur S, Chhuneja P, Dhaliwal HS, Singh K (2008) Transfer of a new leaf rust resistance genes from diploid T. monococcum and T. boeoticum to T. aestivum. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) The 11th international wheat genetics symposium proceedings, Sydney University Press

  • Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409

    Google Scholar 

  • Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the Fertile Crescent. In: Feuillet C, Muehlbauer GJ (eds) Genetics and Genomics of the Triticeae, Plant Genetics and Genomics: Crops and Models 7. Springer, Berlin, pp 81–119

    Google Scholar 

  • Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol Biol Evol 24:2657–2668

    CAS  PubMed  Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat, an introduction. Special Report 353, University of Missouri, USA

  • Klassen L (2008) Zur Bedeutung von Getreide in der Einzelgrabkultur Jütlands. In: Dörfler W, Müller J (eds) Umwelt, Wirtschaft, Siedlungen im dritten vorchristlichen Jahrtausend Mitteleuropas und Südskandinaviens. Wachholtz, Neumünster, pp 49–65 (in German)

    Google Scholar 

  • Knüpffer H (2009) Triticeae genetic resources in ex situ genebank collections. In: Feuillet C, Muehlbauer G (eds), Genetics and Genomics of the Triticeae. Plant Genetics and Genomics: Crops and Models 7, Springer, Berlin, pp 31–79

  • Kolmer JA, Anderson JA, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Sci 50:2392–2395

    Google Scholar 

  • Konvalina P, Capouchová I, Stehno Z, Moudrý J, Moudrý J Jr (2010) Agronomic characteristics of the spring forms of the wheat landraces (einkorn, emmer, spelt, intermediate bread wheat) grown in organic farming. J Agrobiol 27(1):9–17

    Google Scholar 

  • Konvalina P, Capouchová I, Stehno Z, Moudrý J Jr, Moudrý J (2011) Fusarium identification by PCR and DON content in grain of ancient wheat. J Food Agric Environ 9:321–325

    CAS  Google Scholar 

  • Kostov D (1936) Investigation of polyploid plants XI. Amphiploid T. timopheevii Zhuk. T. monococcum L. Dokl Acad Sci USSR 1:32–36 (in Russian)

  • Kovács G (2012) Items from Hungary. Agricultural Research Institute of the Hungarian Academy of Sciences. Ann Wheat Newsl 59:31–32

    Google Scholar 

  • Kreuz A, Boenke N (2002) The presence of two-grained einkorn at the time of the Bandkeramik culture. Veg His Archaeobot 1:233–240

    Google Scholar 

  • Kroll H (1981) Thessalische Kulturpflanzen. Archeo-Physika 8:173–189 (in German)

    Google Scholar 

  • Kroll H (1992) Einkorn from Feudvar, Vojvodina, II. What is the difference between emmerlike two-seeded einkorn and emmer? Rev Palaeobot Palynol 73:181–185

    Google Scholar 

  • Kuckuck H (1970) Primitive wheats. In: Frankel OH, Bennet E (eds) Genetic resources in plants, their exploration and conservation. IBP Handbooks no. 11, pp 249–266

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    CAS  PubMed  Google Scholar 

  • Lachman J, Miholová D, Pivec V, Jírů K, Janovská D (2011) Content of phenolic antioxidants and selenium in grain of einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties. Plant Soil Environ 57:235–243

    CAS  Google Scholar 

  • Lachman J, Orsák M, Pivec V, Jírů K (2012) Antioxidant activity of grain of einkorn (Triticum monococcum L.), emmer (Triticum dicoccum Schuebl. [Schrank]) and spring wheat (Triticum aestivum L.) varieties. Plant Soil Environ 58:15–21

    CAS  Google Scholar 

  • Laghetti G, Fiorentino G, Hammer K, Pignone D (2009) On the trail of last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Resour Crop Evol 56:1163–1170

    Google Scholar 

  • Li HJ, Arterburn M, Jones SS, Murray TD (2005) Resistance to eyespot of wheat, caused by Tapessia yallundae, derived from Thinopyrum intermedium homoeologous group 4 chromosome. Theor Appl Genet 111:932–940

    CAS  PubMed  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA et al (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Google Scholar 

  • Lisicyna G (1983) Die altesten paläoethnobotanischen Funde in Nordmesopotamien. Zeitschrift für Archäologie 17:31–38 (in German)

    Google Scholar 

  • Lisitsina GN (1984) The Caucasus, a centre of ancient farming in Eurasia. In: van Zeis W, Casparie WA (eds) Plants and ancient man. Balkema, Rotterdam, pp 285–292

    Google Scholar 

  • Loskutov IG (1999) Vavilov and his institute. A history of the world collection of plant genetic resources in Russia. IPGRI, Rome

  • Ma H, Hughes GR (1993) Resistance to Septoria nodorum blotch in several Triticum. Euphytica 70:151–157

    Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1997) Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94:279–286

    Google Scholar 

  • Maan SS, Lucken KA (1970) Interaction of Triticum boeoticum cytoplasm and genomes of T. aestivum and T. durum: restoration of male fertility and plant vigor. Euphytica 19:498–508

    Google Scholar 

  • Mac Key J (2005) Wheat: its concept, evolution and taxonomy. In: Royo C et al. (eds) Durum wheat breeding. Current approaches and future strategies, vol 1, pp 3–61

  • Marinova E (2006) Archaeobotanical studies of the Bulgarian Neolithic. The current state of research and perspectives for future studies. In: Gatsov I, Schwarzberg H (eds) Aegean-Marmara-Black Sea: the present state of research on the early Neolithic. Beier and Beran Langenweissbach, Schriften des Zentrums für Archäologie und Kulturgeschichte des Schwarzmeerraumes, pp 187–194

    Google Scholar 

  • Martin L, Jacomet S, Thiebault S (2008) Plant economy during the Neolithic in a mountain context: the case of ‘‘Le Chenet des Pierres’’ in the French Alps (Bozel-Savoie, France) Veget Hist Archaeobot 17:113–122

  • McCorriston J, Hole F (1991) The ecology of seasonal stress and the origins of agriculture in the Near East. Am Anthropol 93:46–69

    Google Scholar 

  • McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat XIII. Sr35-a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z Pflanzenzücht 92:1–14

    Google Scholar 

  • Metakovsky EV, Baboev SK (1992) Polymorphism and inheritance of gliadin polypeptides in T. monococcum L. Theor Appl Genet 84:971–978

    CAS  PubMed  Google Scholar 

  • Miège E (1924) Les formes marocaines de Triticum monococcum L. Bull de la Société des Sciences Naturelles du Maroc 4:154–160 (in French)

    Google Scholar 

  • Migui SM, Lamb RJ (2003) Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull Entomol Res 94:35–46

    Google Scholar 

  • Mihova S (1988) Sources of resistance to yellow rust (Puccinia striiformis West.) in the genus Triticum. Rastenievani Nauki 25:3–8 (in Bulgarian)

    Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-Am 2 in Triticum monococcum. Mol Genet Genom 275:193–203

    CAS  Google Scholar 

  • Miller NF (1991) The origins of plant cultivation in the Near East. In: Cowan CW, Watson PJ, Benco NL (eds) The origins of agriculture: an international perspective. University of Alabama Press, Tuscaloosa

    Google Scholar 

  • Monneveux P, Zaharieva M, Rekika D (2001) The utilisation of Triticum and Aegilops species for the improvement of durum wheat. Options Méditerranénnes 40:71–81

    Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Hettel GP (1995) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT Research Report 2:1–140

    Google Scholar 

  • Mujeeb-Kazi A, Rajaram S (2002) Transferring alien genes from related species and genera for wheat improvement. Bread wheat improvement and production. FAO, Roma, pp 199–215

    Google Scholar 

  • Müller KJ (1999) On-farm improvement and original seeds in Germany. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe—Conservation and sustainable utilization of plant genetic resources for food and agriculture. IPGRI, Rome, pp 84–86

    Google Scholar 

  • Müller KJ, Quendt U, Tovar J (2012) Darchau Getreidezüchtungsforschung, Entwicklungsbericht 2011/2012. Neu Darchau, Deutschland (in German)

    Google Scholar 

  • Multani DS, Dhaliwal HS, Singh P, Gill KS (1988) Synthetic amphiploids of wheat as a source of resistance to Karnal bunt (Neovossia indica). Plant Breeding 101:122–125

    Google Scholar 

  • Murray MA (2003) The plant remains. In: Peltenburg E (ed) The Colonisation and Settlment of Cyprus. Investigations at Kissonerga-Mylouthkia, 1976–1996. Lemba Archaeological Project, Cyprus III.1, Studies in Mediterranean Archaeology 70:59–71

  • Nachit MM, Asbati A, Azrak M, Yunis Z, Saleh A (1995) Introgression of genes for abiotic and biotic stresses from wild relatives of durum wheat. Germplasm Program Cereals, Annual Report for 1995, pp 98–99

  • Nemsadze N (1999) The role of the networks and associations in the production/diffusion of planting materials of old cultivars and landraces in Europe. In: Gass T, Frese L, Begemann F, Lipman E (eds) Implementation of the Global Plan of Action in Europe: Conservation and Sustainable Utilization of PGRFA. IPGRI, Rome, pp 66–69

    Google Scholar 

  • Nesbitt M (1993) Ancient crop husbandry at Kaman-Kalehöyük: 1991 archaeobotanical report. In: Mikasa T (ed) Essays on Anatolian archaeology. Bull of the Middle Eastern Culture Center in Japan no 7. Harrassowitz, Wiesbaden, pp 75–97

  • Nesbitt M (1994) Archaeobotanical research in the Merv Oasis. Iran 32:71–73

    CAS  Google Scholar 

  • Nesbitt M (1995) Plants and people in ancient Anatolia. Biblical Archaeol 58(2):68–81

    Google Scholar 

  • Nesbitt M, Hillman G, Peña-Chocarro L, Samuel D, Szabó TA (1996) Checklist for recording the cultivation and uses of hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 234–246

    Google Scholar 

  • Nesbitt M, Samuel D (1996) From staple crop to extinction? The archaeology and history of the hulled wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 40–99

    Google Scholar 

  • Neumann M, Sodkiewicz W, Skiebbe K (1985) On possibilities of genetic information transfer from Triticum monococcum to Triticale. Genet Polon 26:209–215

    Google Scholar 

  • Nurmi T, Nyström L, Edelmann M, Lampi AM, Piironen V (2008) Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9710–9715

    CAS  PubMed  Google Scholar 

  • Oates D, Oates J (1976) Early irrigation agriculture in Mesopotamia. In: Sieveking G, Longworth IH, Wilson KE (eds) Problems in economic and social archaeology. Duckworth, London, pp 109–135

    Google Scholar 

  • Oliveira HR, Jones H, Leigh F, Lister DL, Jones MK, Peña-Chocarro L (2011) Phylogeography of einkorn landraces in the Mediterranean basin and Central Europe: population structure and cultivation history. Archaeol Anthropol Sci 3:327–341

    Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    CAS  Google Scholar 

  • O’Neill FH, Brynes A, Mandeno R, Rendell N, Taylor G, Seed M, Thompson GR (2004) Comparison of the effects of dietary plant sterol and stanol esters on lipid metabolism. NutritMetab Cardiovasc Dis 14:133–142

    Google Scholar 

  • Out W (2009) Sowing the seed? Human impact and plant subsistence in Dutch wetlands during the Late Mesolithic and Early and Middle Neolithic (5500–3400 cal BC). Archaeological Studies Leiden University 18. Leiden University Press, Leiden

  • Özkan H, Brandolini A, Torun A, Altintas S, Eker S, Kilian B, Braun H, Salamini F, Cakmak I (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). In: Buck HT, Nisi JE, Salomon N (eds) Wheat Production in Stressed Environments. Springer, Berlin, pp 455–462

  • Padulosi S, Hammer K, Heller J (1996) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome

    Google Scholar 

  • Parsa A (1980) Flora of Iran. Ministry of Sciences and Higher Education of Iran, Tehran

    Google Scholar 

  • Pasternak R (1998) Investigations of botanical remains from Nevali C¸ ori PPNB, Turkey. In: Damania A, Valkoun J, Willcox G, Qualset C (eds) The origins of agriculture and crop domestication. ICARDA, Aleppo, pp 170–177

    Google Scholar 

  • Paull JG, Pallotta MA, Langridge P, The TT (1994) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    CAS  PubMed  Google Scholar 

  • Pavićević L (1973) Triticum monococcum in Yugoslavia. Byulleten’ Vsesoyuznogo Ordena Leninga Instituta Rastenievodstva Imeni NI Vavilova 31:84–86 (in Serbian)

    Google Scholar 

  • Pavićević L (1975) Tetraploid and diploid wheat in Montenegro and neighboring areas. Acta Biol 7:217–307

    Google Scholar 

  • Pavićević L (1982) Some positive features of local characteristics of diploid and tetraploid wheat. Genetika 14:1–11

    Google Scholar 

  • Peña-Chocarro L (1996) In situ conservation of hulled wheats species: the case of Spain. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 129–146

    Google Scholar 

  • Peña-Chocarro L, Zapata L, González Urquijo JE, Ibáez JJ (2009) Einkorn (Triticum monococcum L.) cultivation in mountain communities of the western Rif (Morocco): an ethnoarchaeological project. In: Fairnbairn AS, Weiss E (eds) From foragers to farmers. Oxbow

  • Péntek J, Szabó TA (1981) Az alakor (Triticum monococcum) Erdélyben. Ethnographia XCII 2–3:259–277 (in Hungarian)

    Google Scholar 

  • Péntek J, Szabó TA (1985) Plant kingdom and traditional human life in Calata Area (Kalotaszeg, Transylvania, Romania). Kriterion, Bucharest, pp 1–368 (in Hungarian)

  • Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabó AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 101–119

    Google Scholar 

  • Pizzuti D, Buda A, d’Odorico A, d’Incà R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand J Gastroenterol 41:1305–1311

    CAS  PubMed  Google Scholar 

  • Pogna NE, Gazza L, Corona V, Zanier R, Niglio A, Mei E, Palumbo M, Boggini G (2002) Puroindolines and kernel hardness in wheat species. In: Ng PKW, Wrigley CW (eds) Wheat quality elucidation. AACC, St.Paul, pp 155–169

    Google Scholar 

  • Potgieter GF, Marais GF, Du Toit F (1991) The transfer of resistance to the Russian Wheat aphid from Triticum monococcum L. to common wheat. Plant Breed 106:284–292

    Google Scholar 

  • Renfrew C (2002) The emerging synthesis: the archaeogenetics of farming/language dispersals and other spread zones. In: Bellwood P, Renfrew C (eds) Examining the farming language dispersal hypothesis. McDonald Institute for Archaeological Research, Cambridge, pp 3–16

    Google Scholar 

  • Robinson DE (2007) Exploitation of plant resources in the Mesolithic and Neolithic of southern Scandinavia: from gathering to harvesting. In: Colledge S, Conolly J (eds) The origins and spread of domestic plants in southwest Asia and Europe. Left Coast Press, Walnut Creek, pp 359–374

    Google Scholar 

  • Rodríguez-Quijano M, Nieto-Taladriz MT, Carrillo JM (1997) Variation in B-LMW glutenin subunits in Einkorn wheats. Genet Resour Crop Evol 44:539–543

    Google Scholar 

  • Rouse MN, Jin Y (2011) Genetics of resistance to race TTKSK of Puccinia graminis f. sp. tritici in Triticum monococcum. Phytopathology 101:1418–1423

    CAS  PubMed  Google Scholar 

  • Ruiz M, Aguiriano E, Fité R, Carrillo JM (2007) Combined use of gliadins and SSRs to analyse the genetic variability of the Spanish collection of cultivated diploid wheat (Triticum monococcum L. subsp. monococcum) Genet Resour Crop Evol 54:1849–1860

    Google Scholar 

  • Sakamoto S, Kobayashi H (1982) Variation and geographical distribution of cultivated plants, their wild relatives and weeds native to Turkey, Greece and Romania. In: Tani Z (ed) Preliminary report of comparative studies on the agrico-pastoral peoples in Southwestern Eurasia. Kyoto Univ, Japan, pp 41–104

    Google Scholar 

  • Salimi A, Ebrahimzadeh H, Taeb M (2005) Description of Iranian diploid wheat resources. Genet Resour Crop Evol 52:351–361

    Google Scholar 

  • Sallares R (1991) The ecology of the ancient Greek World. Duckworth, London

    Google Scholar 

  • SanGiovanni JP, Chew EY, Clemons TE, Davis MD, Ferris FL, Gensler GR, Kurinij N, Lindblad AS, Milton RC, Seddon JM, Sperduto RD (2007) The relationship of dietary carotenoid and vitamin A, E, and C intake with age-related macular degeneration in a case-control study: AREDS report no 22. Arch Ophthalmol 125:1225–1232

    CAS  PubMed  Google Scholar 

  • Saur L (1991) In search of sources of resistance to head blight caused by Fusarium culmorum in wheat and related species. Agronomie 11:535–541

    Google Scholar 

  • Schiemann E (1948) Weizen, Roggen, Gerste—Systematik, Geschichte und Verwendung. Gustav Fischer-Verlag, Jena (in German)

    Google Scholar 

  • Schiemann E (1951) Emmer in Troja. Berichte der Deutschen Botanischen Gesellschaft 64:155–170 (in German)

    Google Scholar 

  • Schmolke M, Mohler V, Hartl L, Zeller FJ, Hsam SLK (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456

    CAS  Google Scholar 

  • See DR, Giroux M, Gill BS (2004) Effect of multiple copies of puroiudoline genes on grain softness. Crop Sci 44:1248–1253

    CAS  Google Scholar 

  • Sharma BD (2008) The origin and history of wheat in Indian agriculture. In: Gopal L, Srivastava VC (eds) History of agriculture in India (up to c. 1200 AD). Concept Publishing Company, New Delhi, pp 126–142

  • Sharma HC, Waines JG, Foster KW (1981) Variability in primitive and wild wheats for useful genetic characters. Crop Sci 21:555–559

    CAS  Google Scholar 

  • Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed Sci 59:671–678

    CAS  Google Scholar 

  • Sheedy JG, Thompson JP, Kelly A (2012) Diploid and tetraploid progenitors of wheat are valuable sources of resistance to the root lesion nematode Pratylenchus thornei. Euphytica 186:377–391

    Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    CAS  PubMed  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    CAS  PubMed  Google Scholar 

  • Singh K, Chhuneja P, Kaur S, Kaur S, Garg T, Tiwari VK, Rawat N, Bains NS, Dhaliwal HS, Keller B (2008) Triticum monococcum: A source of novel genes for improving several traits. In: Appels R, Eastwood R, Lagudah E, Langridge P, Lynne MM (eds) Proceedings of the 11th international wheat genetic symposium. Brisbane, Australia, pp 295–298

    Google Scholar 

  • Singh K, Chhuneja P, Singh I, Sharma SK, Garg T, Garg M, Keller B, Dhaliwal HS (2010) Molecular mapping of cereal cyst nematode resistance in Triticum monococcum L. and its transfer to the genetic background of cultivated wheat. Euphytica 176:213–222

    CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301–312

    CAS  PubMed  Google Scholar 

  • Sodkiewicz W (2002) Diploid wheat: Triticum monococcum as a source of resistance genes to preharvest sprouting of triticale. Cereal Res Commun 30:323–328

    Google Scholar 

  • Sodkiewicz W, Strzembicka A (2004) Application of Triticum monococcum for the improvement of triticale resistance to leaf rust (Puccinia triticina). Plant Breed 123:39–42

    Google Scholar 

  • Sodkiewicz W, Strzembicka A, Apolinarska B (2008) Chromosomal location in triticale of leaf rust resistance genes introduced from Triticum monococcum. Plant Breed 127:364–367

    Google Scholar 

  • Soshnikova EA (1990) Promising species of Triticum for the production of donors of resistance to stem rust of wheat. Nauchno-tekhnicheskii Byulleten’Vsesoyuznogo Ordena Lenina i Ordena Druzhby Narodov Nauchno-issledovatel’skogo Instituta Rastenievodstva Imeni N.I. Vavilova 197:4–5 (in Russian)

    Google Scholar 

  • Sotherton NW, Emden HFV (1982) Laboratory assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in three Triticum species and two modern wheat cultivars. Ann Appl Biol 101:99–107

    Google Scholar 

  • Stagnari F, Codianni P, Pisante M (2008) Agronomic and kernel quality of ancient wheats grown in central and southern Italy. Cereal Res Commun 36:313–326

    Google Scholar 

  • Stefanov B, Kitanov B (1962) Cultigen plants and cultigen vegetation in Bulgaria. Academic Press, Sofia (in Bulgarian)

    Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441

    CAS  PubMed  Google Scholar 

  • Strãjeru S, Constantinovici D, Ibanescu M (2005) Wheat genetic resources in Romania. In: Lipman E, Maggioni L, Knüpffer H, Ellis R, Leggett JM, Kleijer G, Faberová I, Le Blanc A (eds) Cereal Genetic Resources in Europe. ECPGR/IPGRI, pp 171–74

  • Suchowilska E, Wiwart M, Kandler W, Krska R (2012) A comparison of macro- and microelement concentrationsin the whole grain of four Triticum species. Plant Soil Environ 58:141–147

    CAS  Google Scholar 

  • Szabó TA (1976) On the borderline of natural science and ethnology. Kriterion Verlag, Bucaresti, pp 36–40

    Google Scholar 

  • Szabó TA (1981) Problems of genetic erosion in Transylvania, Romania. Kulturpflanze 29:47–62

    Google Scholar 

  • Szabó TA (1998) Problems of “on farm” prebreeding and “in situ” conservation of Triticum monococcum s.l. in the ABCD-Area in Europe. Bio Tár Electronic, Germoplasma, Studies on Genetic Resources 98 BTN 637. http://binet-biotar.vein.hu/germop/bge637cx_e.htm. Accessed 3 Nov 2013

  • Szabó TA. (1999) Genetic erosion, human environment and ethnobiodiversity studies. Preprint in: Bio Tár Electronic. Germoplasma BTN 766:1–16. http://apps3.fao.org/wiews/Prague/Paper11.jsp. Accessed 3 Nov 2013

  • Szabó TA (2000) A historical survey of studies related to living einkorn (Triticum monococcum subsp. monococcum) populations found in Carpathian Basin. In: Gyulai F (ed) Preservation and use of agrobiodiversity, a lecture dedicated to A. Jánossy (1908–1975), the founder of the Hungarian Agrobotanical Institute and Genebank. Agr Mus Budapest, Inst Agrobot Tápiószele, pp 239–247 (in Hungarian)

  • Szabó TA (2003) Ethnobotanical, plant genetic resource and prebreeding studies on Carpathian einkorns (Triticum monococcum L. subsp. monococcum): 1. A chronological survey. In: Ökológiai gazdálkodásra alkalmas gabonafélék kutatása hagyományos és molekuláris módszerekkel. BioTár Electronic, Germoplazma and Haynaldia series, BTN 1000 (in Hungarian). http://binet-biotar.vein.hu/publicat/cikkek/1000.html. Accessed 3 Nov 2013

  • Szabó TA, Hammer K (1996) Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 2–40

    Google Scholar 

  • Szabó TA, Márton A (1980) The traces of the einkorn. An ancient wheat species in the light of modern research. Müvelödés, Bucharest 33, 1:35–44, 2:45–46 (in Hungarian) Művelődés, Bucharest, 33, 1: 35–44, 2: 45–46

  • Taddei F, Gazza L, Conti S, Muccilli V, Foti S, Pogna NE (2009) Starch-bound 2S proteins and kernel texture in einkorn, Triticum monococcum ssp. monococcum. Theor Appl Genet 119:1205–1212

    CAS  PubMed  Google Scholar 

  • Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143

    CAS  Google Scholar 

  • Téllez Molina R, Alonso Peña M (1952) Los trigos de la Ceres Hispánica de Lagasca y Clemente. Instituto Nacional de Investigaciones Agrarias, Madrid (in Spanish)

    Google Scholar 

  • Tengberg M (1999) Crop husbandry at Miri Qalat, Makran, SW Pakistan (4000-2000 BC). Veg Hist Archaeobot 8:3–12

    Google Scholar 

  • Terrell EE, Peterson PM (1993) Caryopsis morphology and classification in the Triticeae (Pooideae: Poaceae). Smithonian Contributions to Botany, Number 83. Smithsonian Institution Press, Washington DC, 25 p

  • The TT (1973) Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nat New Biol 241:256

    CAS  PubMed  Google Scholar 

  • The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4 and Mle. Aust J Biol Sci 32:115–125

    Google Scholar 

  • Tranquilli G, Cuniberti M, Gianibelli MC, Bullrich L, Larroque OR, MacRitchie F, Dubcovsky J (2002) Effect of Triticum monococcum glutenin loci on cookie making quality and on predictive tests for bread making quality. J Cereal Sci 36:9–18

    CAS  Google Scholar 

  • Tsolova T (2012) Bulgarians cultivating ancient einkorn grain. Radovo, Bulgaria, (Reuters) http://www.reuters.com/article/2012/08/14/us-bulgaria-wheat-einkorn-idUSBRE87D0F420120814. Accessed 3 Nov 2013

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  Google Scholar 

  • Vaccino P, Becker HA, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genom 281:289–300

    CAS  Google Scholar 

  • Valkoun J, Kucerova D, Bartos P (1986) Transfer of leaf rust resistance from Triticum monococcum L. to hexaploid wheat. Z für Pflanzenzücht 96:271–278

    Google Scholar 

  • Vallega V (1977) Validità del Triticum monococcum nel miglioramento genetico del frumento. Sementi Elette 23:3–8 (in Italian)

    Google Scholar 

  • Vallega V (1992) Agronomical performance and breeding value of selected strains of diploid wheat, Triticum monococcum. Euphytica 61:3–23

    Google Scholar 

  • Vallega V (1996) The quality of Triticum monococcum L. in perspective. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 214–222

    Google Scholar 

  • van Slageren MW(1994). Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agricultural University, Wageningen, the Netherlands, International Center for Agricultural research in dry areas (ICARDA), Aleppo, Syria, 512 p

  • van Zeist W (1981) Plant remains from Cape Andreas-Kastros (Cyprus). In: Le Brun A (ed) Un site néolithique precéramique en Chypre: cap Andreas-Kastros. Editions ADPF, Paris, pp 95–99

    Google Scholar 

  • van Zeist W, de Roller GJ (1992) The plant husbandry of Aceramic Cayönü. SE Turkey. Palaeohistoria 33(34):65–96

    Google Scholar 

  • Vasu K, Singh H, Singh S, Chhuneja P, Dhaliwal HS (2001) Microsatellite marker linked to a leaf rust resistance gene from Triticum monococcum L. transferred to bread wheat. J Plant Biochem Biotechnol 10:127–132

    Google Scholar 

  • Vavilov NI (1957) Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, l’na i ikh ispolzovanie v selektzii. Opyt agroekologicheskogo obozreniya vazhneishikh polevykh kultur. (World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. Agroecological survey of the principal field crops). USSR Academy of Science Press, Moscow-Leningrad (in Russian)

  • Vavilov NI (1964) Mirovye resursy sortov khlebnykh zlakov, zernovykh bobovykh, i na ikh ispolzovanie v selektzii. Pshenitza. (World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. Wheat.) Nauka Press, Moscow-Leningrad (in Russian)

  • Vierling RA, Nguyen HT (1992) Use of RAPD markers to determine the genetic diversity of diploid wheat genotypes. Theor Appl Genet 84:835–838

    CAS  PubMed  Google Scholar 

  • Vittozi L, Silano V (1976) The phylogenies of protein α-amylase inhibitors from wheat seed and the speciation of polyploid wheats. Theor Appl Genet 48:279–284

    Google Scholar 

  • Waines JG (1996) Molecular characterization of einkorn wheat. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats, promoting the conservation and used of underutilized and neglected crops. IPGRI, Rome, pp 195–199

    Google Scholar 

  • Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76

    CAS  PubMed  Google Scholar 

  • Weiss E, Kislev ME, Hartmann A (2006) Autonomous cultivation before domestication. Science 312:1608–1610

    CAS  PubMed  Google Scholar 

  • Wieser H, Mueller KJ, Koehler P (2009) Studies on the protein composition and baking quality of einkorn lines. Eur Food Res Technol 229:523–532

    CAS  Google Scholar 

  • Wieser H (2000) Comparative investigations of gluten proteins from different wheat species. I. Qualitative and quantitative composition of gluten protein types. Eur Food Res Technol 211:262–268

    CAS  Google Scholar 

  • Willcox G (2005) The distribution, natural habitats and the availability of wild cereals in relation to their domestication in the Near East: multiple events, multiple centres. Veg Hist Archaeobot 14:534–541

    Google Scholar 

  • Williams PC (1986) The influence of chromosome number and species on wheat hardness. Cereal Chem 63:56–58

    Google Scholar 

  • Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nut 63:813–820

    CAS  Google Scholar 

  • Wyn Jones RG, Gorham J, McDonnell E (1984) Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants. Wiley, New York, pp 189–203

    Google Scholar 

  • Xian-Guang Y, Jin-Yu F, Chuan-Liang D (2011) Molecular cloning of a novel GSK3/shaggy-like gene from Triticum monococcum L. and its expression in response to salt, drought and other abiotic stresses. Af J Biotechnol 10:4065–4071

    Google Scholar 

  • Xu H, Yao G, Xiong L, Yang L, Jiang Y, Fu B, Zhao W, Zhang Z, Zhang C, Ma Z (2008) Identification and mapping of pm2026: a recessive powdery mildew resistance gene in an einkorn (Triticum monococcum L.) accession. Theor Appl Genet 117:471–477

    CAS  PubMed  Google Scholar 

  • Yamaleev AM, Dolotovskii IM, Noikonov VI (1989) Relationship between resistance of wheat root rots and genome composition. Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel’skhozyaistvennykh Nauk Imeni V.I. Lenina 6:4–6

    Google Scholar 

  • Yamashita K, Tanaka M, Koyama M (1957) Studies on the flour quality in Triticum and Aegilops. Seiken Zito 8:20–26

    CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down regulated by vernalization. Science 303:1640–1644

    CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    CAS  PubMed  Google Scholar 

  • Yu BS, Sun GR (1995) Preliminary study of several spring wheat varieties for resistance to Septoria diseases. Crop Genet Resour 1:27–29 (in Chinese)

    Google Scholar 

  • Zaharieva M (1993) Aegilops species in Bulgaria—their ecogeography and distribution. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, Chichester, pp 369–374

    Google Scholar 

  • Zaharieva M, Geleta Ayana N, Al Hakimi A, Misra SC, Monneveux P (2010) Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review. Genet Resour Crop Evol 57:937–962

    Google Scholar 

  • Zanini B, Ferraresi A, Lanzarotto F, Ricci C, Villanacci V, Lnzini A (2012) Clinical, serological and histological effect of daily administration of Triticum monococcum in celiac patients on gluten free diet. J Am Gastroenterol 142:272–273

    Google Scholar 

  • Zanini B, Petroboni B, Not T, Pogna N, Lanzani A (2011) Is Triticum monococcum a coeliac-safe wheat? A phase II, single blind, cross-over study on the effect of acute administration on intestinal permeability. Gut 60:A86–A87. doi:10.1136/gut.2011.239301.179

    Google Scholar 

  • Zhukovsky PM (1951) Türkiyénin zirai bünyesi (Agricultural structure of Turkey). Türkiye leker Fabrikalari Nesriyati No 20 (in Turkish)

  • Zhukovsky PM (1964) Kulturnye rasteniya i ikh sorodichi (Cultivated plants and their relatives). Kolos, Leningrad (in Russian)

    Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Margarita Hernandez-Ellis for the helpful linguistic assistance and useful suggestions. We also gratefully acknowledge Dr. Karl Hammer and the reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Zaharieva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaharieva, M., Monneveux, P. Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): the long life of a founder crop of agriculture. Genet Resour Crop Evol 61, 677–706 (2014). https://doi.org/10.1007/s10722-014-0084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0084-7

Keywords

Navigation