Skip to main content
Log in

Glucosinolates and other seed quality traits of resynthesized Brassica napus L. derived from domesticated and wild Brassica taxa

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Resynthesized Brassica napus L. genotypes can be used to increase the variation in the rapeseed genepool. We evaluated seed quality parameters of resynthesized lines that originated from crosses of oilseed B. rapa L. with domesticated (vegetable) B. oleracea L., and resynthesized lines that were obtained from crosses of B. rapa oilseed cultivars with wild B. oleracea ssp. oleracea and with seven Brassica species from the B. oleracea group (B. bourgeaui Kuntze, B. cretica Lam., B. incana Ten., B. hilarionis Post, B. montana Pourret, B. rupestris Raf., B. villosa Bivona-Bernardi). Twenty-three resynthesized lines and ten cultivars were grown in 1 year and six locations in Germany and the United Kingdom. The mean seed oil, phytosterole, and sinapine contents of the resynthesized lines were lower than in the cultivars, while protein, glucosinolate, and erucic acid contents were higher, respectively. Nearly all resynthesized lines derived from wild Brassica taxa showed a glucosinolate pattern very different from all cultivars and from nearly all resynthesized lines obtained from crosses with domesticated B. oleracea. The newly developed wild Brassica based resynthesized lines represent an immense source of genetic variation that has not been used to full capacity up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

GSL:

Glucosinolate

Resyn line:

Resynthesized line

References

  • Allender CJ, King GJ (2010) Origin of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMY. Plant Biol 10:54

    Google Scholar 

  • Amar S, Becker HC, Möllers C (2009) Genetic variation in phytosterol content of winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 128:78–83

    Article  CAS  Google Scholar 

  • Becker HC, Löptien H, Röbbelen G (1999) Breeding: an overview. In: Gómez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 413–460

    Chapter  Google Scholar 

  • Engqvist GM, Becker HC (1994) What can resynthesized Brassica napus offer to plant breeding? Sveriges Utsädesförenings Tidskrift 104:87–92

    Google Scholar 

  • Fahey JW, Zalcmann AT, Talaley P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56:5–51

    Article  CAS  Google Scholar 

  • Girke A, Becker HC, Engqvist GM (2001) Predicting heterosis from genetic distances for RFLP markers in resynthesized oilseed rape. In: Quantitative genetics and breeding methods: the way ahead. Proceedings of the 11th Meeting of the Section Biometrics in Plant Breeding. Paris, France, 30.8.–1.9.2000, 257–262

  • Girke A, Schierholt A, Becker HC (2011) Extending the rapeseed genepool with resynthesized Brassica napus. II Heterosis. Theor Appl Genet 124:1017–1027

    Article  Google Scholar 

  • Gland A (1982) Gehalt und Muster der Glucosinolate in Samen von resynthetisierten Rapsformen. Z Pflanzenzüchtg. 88:242–254

    CAS  Google Scholar 

  • Gomez-Campo C, Prakash S (1999) Origin and domestication of the Brassicaceae. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 33–58

    Chapter  Google Scholar 

  • Hanelt P (2001) Mansfeld’s encyclopedia of agricultural and horticultural crops, vol 3. Springer, Berlin

    Google Scholar 

  • Harloff H-J, Lemcke S, Mittasch J, Frolov A, Wu JG, Dreyer F, Leckband G, Jung C (2012) A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor Appl Genet 124:957–969

    Article  PubMed  CAS  Google Scholar 

  • Iniguez-Luy FL, Federico ML (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 291–322

    Google Scholar 

  • Inomata N (1993) Crossability and cytology of hybrid progenies in the cross between Brassica campestris and three wild relatives of B. oleracea, B. bourgeaui, B. cretica and B. montana. Euphytica 69:7–17

    Article  Google Scholar 

  • Jesske T (2011) Brassica: Wildarten als neue genetische Ressource für die Rapszüchtung. Georg August Universität Göttingen, Germany, Dissertation

    Google Scholar 

  • Jesske T, Olberg B, Schierholt A, Becker HC (2013) Resynthesized lines from domesticated and wild Brassica taxa and their hybrids with B. napus L.: Genetic diversity and hybrid yield. Theor Appl Genet. doi:10.1007/s00122-012-2036-y

    PubMed  Google Scholar 

  • Mithen RF (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape. Euphytica 63:71–83

    Article  CAS  Google Scholar 

  • Mithen RF (2001) Glucosinolates: biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Mithen RF, Magrath R (1992) Glucosinolates and resistance to Leptoshaeria maculans in wild and cultivated Brassica species. Plant Breed 108:60–68

    Article  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A-M (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  CAS  Google Scholar 

  • Pires JC, Gaeta RT (2011) Structural and functional evolution of resynthesized polyploids. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 195–214

    Chapter  Google Scholar 

  • Qiong H, Yunchang L, Desheng M (2009) Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 261–283

    Chapter  Google Scholar 

  • Reinhard TC (1992) Entwicklung und Anwendung von Nah-Infrarot-Spektroskopischen Methoden für die Bestimmung von Öl-, Protein-, Glucosinolat-, Feuchte- und Fettsäuregehalt in intakter Rapssaat. Georg-August-Universität Göttingen, Dissertation

    Google Scholar 

  • Rücker B, Röbbelen G (1996) Impact of low linolenic acid content on seed yield of winter oilseed rape (Brassica napus L.). Plant Breed 115:226–230

    Article  Google Scholar 

  • Rücker B, Rudloff E (1992) Investigations on inheritance of the glucosinolate content in seeds of oilseed rape (Brassica napus). Proceedings of the 8th international rapeseed congress in Saskatoon, Canada, 9.–11.7.1991. p. 191-196

  • Rygulla W, Friedt W, Seyis F, Lühs W, Eynck C, von Tiedemann A, Snowdon RJ (2007) Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breed 126:596–602

    Article  CAS  Google Scholar 

  • Seyis F, Fried W, Lühs W (2006) Yield of Brassica napus L. hybrids developed using resynthesized rapeseed material sown at different locations. Field Crops Res 96:176–180

    Article  Google Scholar 

  • Song K, Osborn TC (1992) Polyphyletic origins of Brassica napus: new evidence based on organelle and nuclear RFLP analyses. Genome 35:992–1001

    Article  Google Scholar 

  • Sørensen H (1990) Glucosinolates: structure, properties, function. In: Shahidi F (ed) Canola and rapeseed. Production, chemistry, nutrition, and processing technology. Van Nostrand Reinhold, New York, pp 149–172

    Google Scholar 

  • Szadkowski E, Eber F, Huneau V et al (2010) The first meiosis of resynthesized Brassica napus, a genome blender. New Phytol 186:102–112

    Article  PubMed  CAS  Google Scholar 

  • Udall JA, Quijada PA, Polewicz H, Vogelzang R, Osborn TC (2004) Phenotypic effects of introgressing Chinese winter and resynthesized Brassica napus L. germplasm into hybrid spring canola. Crop Sci 44:1990–1996

    Article  Google Scholar 

  • Utz HF (2007) PLABSTAT (Version 2 N): a computer program for the computation of variances and covariances. Institute of Plant BreedingSeed Science and Population Genetics, Universität Hohenheim, Stuttgart

    Google Scholar 

  • Velasco L, Becker HC (2000) Variability for seed glucosinolates in a germplasm collection of the genus Brassica. Genet Resou Crop Evol 47:231–238

    Article  Google Scholar 

  • Zum Felde T, Baumert A, Strack D, Becker HC, Möllers C (2007) Genetic variation for sinapate ester content in winter rapeseed (Brassica napus L.) and development of NIRS calibration equations. Plant Breed 126:291–296

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) and by the German Federation of Private Plant Breeders (GFP). We thank Friedrich Kopisch-Obuch who designed Resyn lines derived from wild Brassica species in a preceding project. We thank breeding companies Deutsche Saatveredelung AG, KWS SAAT AG, Limagrain GmbH, Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, and Syngenta Seeds GmbH for providing field trials. The authors thank Uwe Ammermann and Birgit Olberg for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antje Schierholt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesske, T., Schierholt, A. & Becker, H.C. Glucosinolates and other seed quality traits of resynthesized Brassica napus L. derived from domesticated and wild Brassica taxa. Genet Resour Crop Evol 60, 2273–2282 (2013). https://doi.org/10.1007/s10722-013-9993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-9993-0

Keywords