Skip to main content
Log in

Genetic diversity, population structure and differentiation of rice species from Niger and their potential for rice genetic resources conservation and enhancement

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript


Rice genetic resources conservation and evaluation is crucial to ensure germplasm sources for further crop breeding. We conducted a wide collection of Oryza species in Niger and characterize its diversity with microsatellites (or simple sequence repeats, SSR). The aims of this research were to get a better understanding of the extent of genetic diversity, its structure and partition within rice eco-geographical zones of Niger. There were 264 accessions found in farmers’ and other fields: 173 O. sativa (Asia’s rice), 65 O. glaberrima (Africa’s rice), 25 O. barthii, and 1 O. longistaminata (weedy perennial rice), which were genotyped with 18 SSR. A total of 178 alleles were detected, with a mean of 9.89 alleles per locus. The polymorphism information content was 0.65 and heterozygosity was estimated as 0.14. Two main well-differentiate genotypic groups, which correspond to Asian and African rice species, were identified. The SSR set divided the Asia’s rice group (solely indica) into irrigated and floating rice, with rainfed lowland rice in between. The African rice species group was composed of O. glaberrima, O. longistaminata and O. barthii accessions, but without any clear genetic differentiation among them likely due admixtures within the samples of O. barthii. Five accessions that could be natural interspecific hybrids were too admixed for assigning them to any of the two well-differentiated groups. The partitioning of the overall diversity showed that maximum variation was within genotypic groups and subgroups or cropping ecologies, rather than between eco-geographical zones. The eco-geographical distribution of the diversity suggests germplasm exchange in Niger. Next-steps for conserving rice and crop wild relatives in Niger could be taken using the findings of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Barry MB, Pham JL, Billot C, Courtois B, Ahmadi N (2007) Genetic diversity of the two cultivated rice species (O. sativa and O. glaberrima) in maritime Guinea. Evidence for interspecific recombination. Euphytica 154:127–137

    Article  CAS  Google Scholar 

  • Bezançon G (1993) Le riz cultivé d’origine africaine Oryza glaberrima Steud. et les formes sauvages et adventices apparentées : diversité, relations génétiques et domestication, Collection Travaux et Documents Microédités. ORSTOM, Paris, France

  • Bezançon G, Causse M, Ghesquiere A, De Kochko A, Pham JL, Second D (1989) Les riz en Afrique: diversité génétique, relations interspécifiques et évolution. Bull Soc Bot Fr 136:251–262

    Google Scholar 

  • Bonkoula A, Miezan K (1982) Collecte des riz au Niger (Régions de Sinder et Kollo). Rapport de mission. ORSTOM, Abidjan, Côte d’Ivoire

  • Chang TT (1976) The origin, evolution, cultivation and diversification of Asian and African rices. Euphytica 25:425–441

    Article  Google Scholar 

  • Chang TT (1984) Conservation of rice genetic resources: luxury or necessity? Science 224:251–256

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu B-R (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot 93:67–73

    Article  CAS  PubMed  Google Scholar 

  • Chevalier A (1932) Nouvelle contribution à l’étude systématique des Oryza. Rev Bot Appl d’ Agric Trop 136:1014–1032

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Gao L-Z, Zhang C-H (2005) Comparisons of microsatellite variability and population genetic structure of two endangered wild rice species, Oryza rufipogon and O. officinalis and their conservation implications. Biodivers Conserv 14:1663–1679

    Article  Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed  Google Scholar 

  • Ghesquiere A, Sequier J, Second G, Lorieux M (1997) First step towards a rational use of African rice O. glaberrima in rice breeding through a ‘contig line’ concept. Euphytica 96:31–39

    Article  Google Scholar 

  • Girma G, Tesfaye K, Bekele E (2010) Inter Simple Sequence Repeat (ISSR) analysis of wild and cultivated rice species from Ethiopia. Afr J Biotech 9:5048–5059

    CAS  Google Scholar 

  • Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Article  CAS  PubMed  Google Scholar 

  • Jones M, Dingkuhn M, Aluko G, Semon M (1997) Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 94:237–246

    Article  Google Scholar 

  • Li C, Pan D, Mao X, Tu C, Zhou H, Fan Z, Li X (2006) The genetic diversity of Gaozhou wild rice analyzed by SSR. Chin Sci Bull 51:562–572

    Article  CAS  Google Scholar 

  • Li Z-M, Zheng X-M, Ge S (2011) Genetic diversity and domestication history of African rice (Oryza glaberrima) as inferred from multiple gene sequences. Theor Appl Genet 123:21–31

    Article  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  • McCouch S, Sweeney M, Li J, Jiang H, Thomson M, Septiningsih E, Edwards J, Moncada P, Xiao J, Garris A, Tai T, Martinez C, Tohme J, Sugiono M, McClung A, Yuan L, Ahn S-N (2007) Through the genetic bottleneck: O. rufipogon as a source of trait-enhancing alleles for O. sativa. Euphytica 154:317–339

    Article  CAS  Google Scholar 

  • Ndjiondjop M-N, Cisse F, Girma G, Sow M, Bocco R, Djedatin G, Fatondji B (2010) Morpho-agronomic and molecular characterisation of Oryza glaberrima germplasm from Mali. Afr J Biotech 9:7409–7417

    Google Scholar 

  • Nuijten E, van Treuren R, Struik PC, Mokuwa A, Okry F, Teeken B, Richards P (2009) Evidence for the emergence of new rice types of interspecific hybrid origin in West African farmers’ fields. PLoS ONE 4:e7335. doi:10.1371/journal.pone.0007335

    Article  PubMed Central  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. CIRAD, Montpellier, France. Accessed 30 Oct 2010

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants. Enfield, Science Publishers, Montpellier, France, pp 43–76

    Google Scholar 

  • Pham JL (1992) Evaluation des ressources génétiques des riz cultivés en Afrique par hybridation intra- et interspécifique, collection travaux et documents microédités. ORSTOM, Paris, France

  • Porteres R (1970) Primary cradles of agriculture in the African continent. In: Fage J, Olivier R (eds) Papers in African prehistory. Cambridge University Press, Cambridge UK, pp 43–58

    Google Scholar 

  • Portères R (1956) Taxonomie agrobotanique des riz cultivés O. sativa L. et O. glaberrima Steud. J d’Agric Trop Bot Appl 3:341–856

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Purseglove JW, Harlan JR (1976) The origins and migrations of crops in tropical Africa. In: De Wet JMJ, Stemler ABL (eds) Origin of African plants domestication. Mouton Publishers, The Hague, Paris, pp 291–309

    Google Scholar 

  • Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sanni K, Fawole I, Guei R, Ojo D, Somado E, Tia D, Ogunbayo S, Sanchez I (2008) Geographical patterns of phenotypic diversity in Oryza sativa landraces of Côte d’Ivoire. Euphytica 160:389–400

    Article  Google Scholar 

  • Sano Y, Sano R (1984) Neighbour effects between two co-occurring rice species, Oryza sativa and O. glaberrima. J Appl Ecol 21:245–254

    Article  Google Scholar 

  • Second G (1985) Relations évolutives chez le genre Oryza et processus de domestication des riz, Collection Etudes et Thèses. ORSTOM, Paris, France

  • Semon M, Nielsen R, Jones M, McCouch S (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of LD caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations: variability within and among natural populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

  • Yawen Z, Shiquan S, Zichao L, Zhongyi Y, Xiangkun W, Hongliang Z, Guosong W (2003) Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China. Genet Resour Crop Evol 50:567–577

    Article  Google Scholar 

Download references


Mounirou Sow was granted a PhD fellowship by the Africa Rice Center (AfricaRice) through a project funded by the United States Agency for International Development (USAID). The authors thank the USAID and the Generation Challenge Programme for funding the collecting mission and genotyping. We are also grateful to Dr Nourollah Ahmadi from CIRAD for providing the set of SSR markers, supporting for data analysis and critical reading of this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Marie-Noelle Ndjiondjop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sow, M., Ndjiondjop, MN., Sido, A. et al. Genetic diversity, population structure and differentiation of rice species from Niger and their potential for rice genetic resources conservation and enhancement. Genet Resour Crop Evol 61, 199–213 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: