Skip to main content
Log in

The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. in Freyc.) determined by nuclear SSR marker analysis

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Ramie (Boehmeria nivea) was domesticated in China. However, the geographic region of domestication is not exactly known. Genetic diversity and population structure of ramie and their wild relatives were assessed using microsatellite markers. The 8 microsatellite primers revealed 96 alleles in 50 ramie populations, with an average of 10.25 alleles per locus. Cultivated ramie gene pool harbors approximately 82.9 % of the SSR diversity presented in wild B. nivea var. nivea. It is suggested that ramie has experienced a relatively moderate domestication bottleneck. The distribution of genetic diversity shows that genetic diversity is relatively high in populations along the Yangtze River compared to the peripheral ones. The scatter plots of principal coordinates analysis indicated that there are three well-supported varieties in B. nivea. The NJ tree and the distribution of genetic diversity showed that ramie has been domesticated in the middle and lower regions of the Yangtze valley, and populations in Sichuan province have been introduced from this region, forming naturalized populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahuja SL (1988) Association and path-coefficient studies on vegetatively propagating and sexually reproducing parts in ramie (Boehmeria nivea L. Gaud.). Sex Plant Reprod 1:63–64

    Article  Google Scholar 

  • Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc Environ 10:77

    CAS  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Duan SW, Liu ZC, Feng XY, Zheng K, Cheng LF, Zheng X (2012) Diversity and characterization of ramie-degumming strains. Scientia Agricola 69:119–125

    Article  CAS  Google Scholar 

  • Dudaniec RY, Storfer A, Spear SF, Richardson JS (2010) New microsatellite markers for examining genetic variation in peripheral and core populations of the coastal giant salamander (Dicamptodon tenebrosus). PLoS ONE 5:e14333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo AP, Zhou P, Peng SQ, Zheng XQ (2001) Factors affecting the reaction system of RAPD analysis in Boehmeria Jacq. Chin J Trop Crops 22:64–69

    Google Scholar 

  • Guo XB, Zang GG, Zhao LN, Cheng CH, Li YJ (2008) Improvement of the extraction method of genomic DNA of wild species of Boehmeria nivea (Linn.) Gaudich. Plant Fiber Sci China 30:28–32

    Google Scholar 

  • Jiang YB, Jie YC (2005) Advances in research on the genetic relationships of Boehmeria in China. J Plant Genet Res 6:114–118

    Google Scholar 

  • Jiang YB, Jie YC, Zhou JL, Xing HC, She W (2007) Isolation and characterization of microsatellites from ramie [Boehmeria nivea (L.) Gaud.]. Acta Agronomica Sinica 22:158–162

    Google Scholar 

  • Kalinowski ST (2005) Hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kuhn D (1988) Science and civilisation in China. Cambridge University Press, London

    Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Vaughan D (2010) The origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Mol Ecol 19:2346–2360

    Article  CAS  PubMed  Google Scholar 

  • Li HL (1970) The origin of cultivated plants in Southeast Asia. Econ Bot 24:3–19

    Article  Google Scholar 

  • Li JJ, Guo QQ, Chen JR (2006) Rapd analysis of lignin content for 21 ramie varieties. Plant Fibers Prod 28:120–127

    Google Scholar 

  • Li TJ, Xu LL, Pan QL, Lai ZJ, Liao L (2008) Study advances on the systematics of Boehmeria. Jiangxi For Sci Technol 2:32–35

    Article  Google Scholar 

  • Liao L, Li TJ, Liu ZL, Deng HS, Xu LL, Pan QH, Lai ZJ, Shi QH (2009) Phylogenetic relationship of ramie and its wild relatives based on cytogenetic and DNA sequence analyses. Acta Agronomica Sinica 35:1778–1790

    CAS  Google Scholar 

  • Liao L, Li TJ, Zhao ZW, Chen YB, Xu LL, Pan QH, Shi QH (2010) Phylogenetic relationship of ramie and its wild relatives based on SRAP markers. Guihaia 30:791–795

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu FH, Li Z, Liu Q, He H, Liang X, Lai Z (2003) Introduction to the wild resources of the genus Boehmeria Jacq. in China. Genet Resour Crop Evolut 50:793–797

    Article  Google Scholar 

  • Liu LJ, Meng ZQ, Xing XL, Peng DX (2006) Optimization for srap reaction system in ramie (Boehmeria nivea (L.) Gaud.). Mol Plant Breed 4:726–730

    CAS  Google Scholar 

  • Liu LJ, Peng DX, Wang B (2008) Genetic relation analysis on ramie [Boehmeria nivea (L.) Gaud.] Inbred lines by SRAP markers. Agric Sci China 7:944–949

    Article  CAS  Google Scholar 

  • Liu L, Meng ZQ, Wang B, Wang X, Yang JY, Peng D (2009) Genetic diversity among wild resources of the genus Boehmeria Jacq. From West China determined using inter-simple sequence repeat and rapid amplification of polymorphicDNA markers. Plant Prod Sci 12:88–96

    Article  CAS  Google Scholar 

  • Liu F, Yao J, Wang X, Repnikova A, Galanin DA, Duan D (2012) Genetic diversity and structure within and between wild and cultivated Saccharina japonica (Laminariales, Phaeophyta) revealed by SSR markers. Aquaculture 358:139–145

    Article  Google Scholar 

  • Mandel J, Dechaine J, Marek L, Burke J (2011) Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L. Theor Appl Genet 123:693–704

    Article  CAS  PubMed  Google Scholar 

  • Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Muraya MM, de Villiers S, Parzies HK, Mutegi E, Sagnard F, Kanyenji BM, Kiambi D and Geiger HH (2011) Genetic structure and diversity of wild sorghum populations (Sorghum spp.) From different eco-geographical regions of Kenya. Theor Appl Genet 123:571–583

    Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Sen T, Reddy HN (2011) Various industrial applications of hemp, kinaf, flax and ramie natural fibres. IJIMT 2:192–198

    Google Scholar 

  • Sun ZM, Zhang B (1999) Stipule morphology and classification value in Boehmeria Jacq. China’s Fiber Crops 21:17–19

    Google Scholar 

  • van Zonneveld M, Scheldeman X, Escribano P, Viruel MA, Van Damme P, Garcia W, Tapia C, Romero J, Sigueñas M, Hormaza JI (2012) Mapping genetic diversity of cherimoya (Annona cherimola Mill.): application of spatial analysis for conservation and use of plant genetic resources. PLoS ONE 7:e29845

    Article  PubMed Central  PubMed  Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Vigouroux Y, Mitchell S, Matsuoka Y, Hamblin M, Kresovich S, Smith JSC, Jaqueth J, Smith OS, Doebley J (2005) An analysis of genetic diversity across the maize genome using microsatellites. Genetics 169:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Wang WT (1981a) Revisio Boehmeriae sinicae. Acta Botanica Yunnanica 3:307–328

    Google Scholar 

  • Wang WT (1981b) Revisio Boehmeriae sinicae (cont.). Acta Botanica Yunnanica 3:401–416

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Assoc. Inc., Sunderland

    Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, Mcmullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Wu ZY, Raven PH, Hong DY (2003) Flora of China. Volume 5: ulmaceae through Basellaceae. Science Press, Beijing

    Google Scholar 

  • Xing XL (2008) Development of microsatellite markers from ramie and its application for preliminary study of heterosis forecast. Wuhan, Huazhong Agricultural University, Master thesis

  • Zhang J, Li TJ, Cao B, Xu LL, Liao L (2012) Development of ramie EST-SSR primers and high morphic loci analysis. Jiangsu Agric Sci 40:25–27

    Google Scholar 

  • Zhao CY, Li JS (1999) Evaluation and utilization of resources of ramie in Qinba mountain area. Acta Agriculturae Boreali Occidentalis Sinica 8:116–118

    Google Scholar 

Download references

Acknowledgments

We would like to thank institute of bast fiber crops, Chinese academy of agricultural sciences for providing materials. This work was supported by National Natural Science Foundation of China (NSFC30860027) and Natural Science Foundation of Jiangxi Province (2009GZN0080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingling Xu.

Additional information

Liang Liao and Tongjian Li have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, L., Li, T., Zhang, J. et al. The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud. in Freyc.) determined by nuclear SSR marker analysis. Genet Resour Crop Evol 61, 55–67 (2014). https://doi.org/10.1007/s10722-013-0014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-013-0014-0

Keywords

Navigation