Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions

Abstract

Accessions of wild and domesticated hemp (Cannabis sativa L.) originating from Colombia, Mexico, California, Bolivia, Thailand, Afghanistan, Serbia, Hungary, south Africa and different regions of China, were studied by means of DNA polymorphisms in order to discriminate between drug and fiber types. Analysis of molecular variance (AMOVA) was used to partition the total genetic variance within and among populations. The significance of the variance components was tested by calculating their probabilities based on 999 random permutations. AMOVA revealed 74 % variation among accessions and 26 % within accessions, all AMOVA variation was highly significant (P < 0.001). The cluster analysis of molecular data, grouped accessions into eight clusters and gave a matrix correlation value of r = 0.943, indicating a very good fit between the similarity values implied by the phenogram and those of the original similarity matrix. In this study, DNA polymorphisms could discriminate the fiber and drug types, and accessions were grouped in accordance to their classification and uses. In addition, seed size variation and micromorphological characters of seeds were studied by means of a scanning electron microscope (SEM). Seeds varied significantly in size, and were bigger in the fiber types. SEM analysis exhibited variation of micromorphological characters of seeds that could be important for discriminating the fiber or drug types.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Afifi AA, Clark V (1984) Computer aided multivariate analysis. Lifetime Learning Publ, Belmont

    Google Scholar 

  2. Anderson LC (1974) A study of systematic wood anatomy in Cannabis. Harvard Univ Bot Mus Leafl 24:29–36

    Google Scholar 

  3. Anderson LC (1980) Leaf variation among Cannabis species from a controlled garden. Harvard Univ Bot Mus. Leafl 28:61–69

    Google Scholar 

  4. Brennelsen R (1984) Psychotrope Drogen. Pharm Acta Helv 59:247–259

    Google Scholar 

  5. Broseus J, Anglada F, Esseiva P (2010) The differentiation of fibre- and drug type Cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Forensic Sci Int 200:87–92

    PubMed  Article  CAS  Google Scholar 

  6. Bruci Z, Papoutsis I, Athanaselis S, Nikolaou P, Pazari E, Spiliopoulou C, Vyshka G (2012) First systematic evaluation of the potency of Cannabis sativa plants grown in Albania. Forensic Sci Int 222:40–46

    PubMed  Article  CAS  Google Scholar 

  7. Buss CC, Lammers TG, Wise RR (2001) Seed coat morphology and its systematic implications in Cyanea and other genera of Lobelioideae (Campanulaceae). Am J Bot 88:1301–1308

    PubMed  Article  CAS  Google Scholar 

  8. Caffarel MM, Andradas C, Pèrez-Gόmez E, Guzmán M, Sánchez C (2012) Cannabinoids: a new hope for breast cancer therapy? Cancer Treat Rev 38:911–918

    PubMed  Article  CAS  Google Scholar 

  9. Datwyler SL, Weiblen GD (2006) Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J Forensic Sci 51(2):371–375

    PubMed  Article  CAS  Google Scholar 

  10. De Backer B, Debrus B, Lebrun P, Theunis L, Dubois N, Decock L, Verstraete A, Hubert P, Charlier C (2009) Innovative development and validation of an HPLC/DAD method for the qualitative and quantitative determination of major cannabinoids in Cannabis plant material. J Chromatogr B 877:4115–4124

    Article  Google Scholar 

  11. De Queiroz RT, Goulard de Azevedo Tozzi AM, Lewis GP (2013) Seed morphology: an addition to the taxonomy of Tephrosia (Leguminosae, Papilionoideae, Millettieae) from South America. Plant Syst Evol 299:459–470

  12. Dulson J, Scott LM, Ripley VL (1998) Efficacy of bulked DNA samples for RAPD DNA fingerprinting of genetically complex Brassica napus cultivars. Euphytica 102:65–70

    Article  CAS  Google Scholar 

  13. Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge University Press, Cambridge

    Google Scholar 

  14. Emboden WA (1974) Cannabis—a polytypic genus. Econ Bot 28:304–310

    Article  Google Scholar 

  15. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotype: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  16. Faeti V, Mandolino G, Ranalli P (1996) Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant breed 115:367–370

    Article  Google Scholar 

  17. Forapani S, Carboni A, Paoletti C, Moliterni VMC, Ranalli P, Mandolino G (2001) Comparison of hemp varieties using random amplified polymorphic DNA markers. Crop Sci 41(6):1682–1689

    Article  CAS  Google Scholar 

  18. Fuchs L (1542) The great herbal of Leonhart Fuchs: De historia stirpium commentarii insignes (notable commentaries on the history of plants), Stanford University Press: Staford, 1999

  19. Gandhi D, Albert S, Pandya N (2011) Morphological and micromorphological characterization of some legume seeds from Gujarat, India. Env Exp Biol 9:105–113

    Google Scholar 

  20. Gillan R, Cole MD, Linacre A, Thorpe JW, Watson ND (1995) Comparison of Cannabis sativa by random amplification of polymorphic DNA (RAPD) and HPLC of cannabinoids: a preliminary study. Sci Justice 35:169–177

    PubMed  Article  CAS  Google Scholar 

  21. Gontcharova SB, Gontcharova AA, Yakubov VV, Kondo K (2009) Seed surface morphology in some representatives of the genus Rhodiola sect. Rhodiola (Crassulaceae) in Russian Far East. Flora 204:17–24

    Article  Google Scholar 

  22. Hansen R (2009) Industrial hemp profile http://www.agmrc.org/commodities_products/fiber/ industrial _hemp_profile.cfm

  23. Hillig KW (2005) Genetic evidence for speciation in Cannabis (Cannabaceae). Genet Resour Crop Evol 52:161–180

    Article  CAS  Google Scholar 

  24. Howard C, Gilmore S, Robertson J, Peakall R (2008) Developmental validation of a Cannabis sativa STR multiplex system for forensic analysis. J Forensic Sci 53:1061–1067

    PubMed  CAS  Google Scholar 

  25. Jagadish V, Robertson J, Gibbs A (1996) RAPD analysis distinguishes Cannabis sativa samples from different sources. Forensic Sci Int 79:113–121

    Article  CAS  Google Scholar 

  26. Javadi F, Yamaguchi H (2004) A note on seed coat and plumule morphological variation in the genus Cicer (Fabaceae). Sci Rep Grad Sch Agric Biol Sci 56:7–16

    Google Scholar 

  27. Koul KK, Ranina N, Raina SN (2000) Seed coat microsculpturing in Brassica and allied genera (Subtribe Brassicinae, Raphanine, Moricandiinae). Ann Bot 86:385–397

    Article  Google Scholar 

  28. Lamarck JB (1785) Encyclopédie méthodique botanique, Chez Panckoucke, Paris

  29. Lehmann T, Brenneisen R (1995) High performance liquid chromatographic profiling of Cannabis products. J Liq Chromatogr 18:689–700

    Article  CAS  Google Scholar 

  30. Li HL (1974) An archeological and historical account of Cannabis in China. Econ Bot 28:437–438

    Article  Google Scholar 

  31. Mandolino G, Ranalli P (2002) The application of molecular markers in genetic and breeding of hemp. J Ind Hemp 7:7–23

    Article  CAS  Google Scholar 

  32. Mechoulam R (1970) Marijuana chemistry. Science 168:1159–1166

    PubMed  Article  CAS  Google Scholar 

  33. Peakall R, Smouse PE (2006). GENALEX V6.1: genetic analysis in excel. Population genetic software for teaching and research. Australian National University Canberra Australia http://www.anu.edu.au/BoZo/GenAlex/

  34. Pejic B, Vukcevic M, Kostic M, Skundric P (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: effect of chemical composition. J Hazard Mater 164(1):146–153

    PubMed  Article  CAS  Google Scholar 

  35. Piluzza G, Pecetti L, Bullitta S, Piano E (2005) Discrimination among subterranean clover (Trifolium subterraneum L. complex) genotypes using RAPD markers. Genet Resour Crop Evol 52:193–199

    Article  CAS  Google Scholar 

  36. Pinarkara E, Kyis SA, Hakki E, Sag A (2009) RAPD analysis of seized marijuana (Cannabis sativa) in Turkey. Electron J Biotechn 12:1–13

    Google Scholar 

  37. Pommet M, Juntaro J, Heng JY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MS, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9:1643–1651

    PubMed  Article  CAS  Google Scholar 

  38. Rivoira G (1981) Canapa. In: Baldoni R, Giardini L (eds) Coltivazioni erbacee. Patron, Bologna

    Google Scholar 

  39. Rohlf FJ (1992) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 1.70. Exeter Software. Setauket, New York

  40. Russo E (2007) History of Cannabis and its preparations in saga, science and sobriquet. Chem Biodivers 4:1614–1648

    PubMed  Article  CAS  Google Scholar 

  41. Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Harvard Univ Bot Mus Leafl 23:337–367

    Google Scholar 

  42. Shoyama Y, Tamada T, Kurihara K, Takeuchi A, Taura F, Arai S, Blaber M, Shoyama Y, Morimoto S, Kuroki R (2012) Structure and function of ∆1-tetrahydrocannabinolic acid (THCA) synthase, the enzyme controlling the psychoactivity of Cannabis sativa. J Mol Biol 423:96–105

    PubMed  Article  CAS  Google Scholar 

  43. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25(4):405–435

    Article  Google Scholar 

  44. Sneath P, Sokal R (1973) Numerical taxonomy. W H Freeman and Company, San Francisco

    Google Scholar 

  45. Sokal RR (1961) Distance as a measure of taxonomic similarity. Syst Zool 10:70–79

    Article  Google Scholar 

  46. Stambouli H, El Bouri A, Bellimam MA, Bouayoun T, El Karni N (2005) Cultivation of Cannabis sativa L. in Northern Marocco. Bull Narc, vol. LVII(1–2): 79–118

  47. Vavilov NI (1926) The origin of the cultivation of “primary” crops, in particular cultivated hemp. In: studies on the origin of cultivated plants, Institute of Applied Botany and Plant Breeding (USSR), Leningrad, pp. 221–223

  48. Vavilov NI, Bukinich DD (1929) Agricultural Afghanistan. Bull Appl Bot Leningrad, Suppl.33, 610 pp

  49. Williams JK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by primers are useful genetic markers. Nucl Acid Res 18:6531–6535

    Article  CAS  Google Scholar 

  50. World Drug Report (2005) United Nations publication, Sales No. E.05.XI.10

  51. Yoshizaki M (2003) Millets in prehistoric remain: Paleobotany on barnyard millets and azuki beans in Japan. In: Yamaguchi H, Kawase M (eds) Natural history of millets. Hokaido University Press, Sapporo

    Google Scholar 

  52. Zhang ZY, Yang DZ, Lu AM, Knapp S (2005) Seed morphology of the tribe Hyoscyameae (Soloanaceae). Taxon 54:71–83

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to dr. E.P.M. De Meijer from Hortapharm B.V., Amsterdam, and Dr. R. Clarke from International Hemp Association (IHA) Amsterdam for kindly providing the hemp accessions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Bullitta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Piluzza, G., Delogu, G., Cabras, A. et al. Differentiation between fiber and drug types of hemp (Cannabis sativa L.) from a collection of wild and domesticated accessions. Genet Resour Crop Evol 60, 2331–2342 (2013). https://doi.org/10.1007/s10722-013-0001-5

Download citation

Keywords

  • Cannabis sativa
  • DNA polymorphisms
  • Drug type
  • Fiber type
  • Seeds
  • SEM