Genetic Resources and Crop Evolution

, Volume 60, Issue 4, pp 1463–1477 | Cite as

Assessment of phenotypic variation of Malus orientalis in the North Caucasus region

  • Monika Höfer
  • Henryk Flachowsky
  • Magda-Viola Hanke
  • Valentin Semënov
  • Anna Šlâvas
  • Irina Bandurko
  • Artëm Sorokin
  • Sergej Alexanian
Research Article


Malus orientalis Uglitzk. is the predominant Malus species of the Caucasian forests distributed in the north of Anatolia, Armenia, Russia as well as in Iran. It is considered as one of the probable minor ancestors of domestic apples. Although M. orientalis has a lower diversity of fruit quality, other valuable traits such as later blooming, adaptation to a wider array of habitats, and capacity for longer storage of the apples should be taken into account for improving the genetic makeup of the domestic apple. A joint expedition of scientists of the Julius Kühn-Institute from Germany and the Nikolaj I. Vavilov Research Institute of Plant Industry from Russia was performed into the North Caucasus region during August/September 2011. Altogether 101 M. orientalis accessions were collected from eight sites at the North Caucasus. Twenty-six traits such as size, color, shape, flavor and firmness of fruit and tree habit were used for phenotypic evaluation of the accessions. A high phenotypic diversity within the collected material of M. orientalis was indicated. Accessions characterized by suitable fruit traits like bigger size, larger cover color, less bitterness and better firmness as well as more sweetness and better flavor were found. However, small-sized flavorless fruits were also detected. Tree habit varied widely from upright to weeping. Subsequently, a comprehensive phenotypic and genetic evaluation of M. orientalis increases the knowledge of diversity, may provide new resources of agronomically important traits for breeding purposes, and gives support to determine accessions for a core collection.


Apple Caucasus Mountains Evaluation Genetic diversity Malus orientalis 


  1. Aldwinckle HS, Gustafson HL, Forsline PL, Bhaskara Reddy MV (2002) Fire blight resistance of Malus species from Sichuan (China), Russian Caucasus, Turkey, and Germany. Acta Hortic 590:369–372Google Scholar
  2. Browicz K, Fröhner S, Gilli A, Nordborg G, Riedl H, Schiman-Czeika H, Schönbeck-Temesy E, Vassilczenko T (1969) Rosaceae I. In: Rechinger KK (ed) Flora Iranica. Akademische Druck- und Verlagsanstalt, Graz, pp 1–217Google Scholar
  3. Brown AHD (1989) Core collections. A practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  4. Burmistrov L (1995) New Crops and Wild Fruits and Nuts. URL: (Stand: 30 Jan 2012)
  5. Büttner R (2001) Rosaceae. In: Hanelt P, IPK (eds) Mansfeld’s encyclopedia of agricultural and horticultural crops. Springer, Berlin, pp 417–532Google Scholar
  6. Coart E, van Glabeke S, De Loose M, Larsen AS, Roldan-Ruiz I (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the european wild apple (Malus sylvestris (L.) Mill. and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15:2171–2182PubMedCrossRefGoogle Scholar
  7. Dzhangaliev A (2003) The wild apple tree of Kazakhstan. In: Janick J, Forsline PhL, Dickson EE, Thompson M, Way RD (eds) Horticultural reviews wild apple and fruit trees of Central Asia, vol 29. Wiley, New York, pp 63–303Google Scholar
  8. Ercisli S, Esitken A, Orhan E, Ozdemir O (2004) Rootstocks used for temperate fruit trees in Turkey: an overview. Scientific works of the Lithuanian Institute of Horticulture and Lithuanian University of Agriculture 25:27–33Google Scholar
  9. Fischer A, Schmidt M (1938) Wilde Kern- und Steinobstarten, ihre Heimat und ihre Bedeutung für die Entstehung der Kultursorten und die Züchtung. Der Züchter 10:157–167Google Scholar
  10. Forsline PL (2000) Procedures for collection, conservation, evaluation and documentation of Malus germplasm. Acta Hort 522:223–234Google Scholar
  11. Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2003) Collection, maintenance, characterization, and utilization of wild apples of central Asia. In: Janick J, Forsline PL, Dickson EE, Thompson M, Way RD (eds) Horticultural reviews wild apple and fruit trees of Central Asia, vol 29. Wiley, New York, pp 1–61Google Scholar
  12. Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842CrossRefGoogle Scholar
  13. Gharghani A, Zamani Z, Talaie A, Fatahi R, Hajnajari H, Oraguzie NC, Wiedow C, Gardiner SE (2010) The role of Iran (Persia) in apple (Malus × domestica Borkh.) domestication, evolution and migration via the Silk Trade Route. Acta Hort 859:229–236Google Scholar
  14. Hanke MV, Flachowsky H, Höfer M, Semënov V, Šlâvas A, Bandurko I, Sorokin A, Alexanian S (2012) Collecting fruit genetic resources in the North Caucasus region. J Kulturpflanzen 64:126–136Google Scholar
  15. Harris SA, Robinson JP, Juniper BE (2002) Genetic clues to the origin of the apple. Trends Genet 18:426–430PubMedCrossRefGoogle Scholar
  16. Hillig KW, Iezzoni AF (1988) Multivariate analysis of sour cherry germplasm collection. J Am Soc Hort Sci 113:928–934Google Scholar
  17. Höfer M (2008) Characterization of phenotypic diversity in offsprings of Malus sieversii (Ledeb.) Roem. In: First symposium on horticulturae in Europe, Vienna, Austria, 17–20 February, Abstract, p 253Google Scholar
  18. Hokanson SC, McFerson JR, Forsline PhL, Lamboy WF, Luby JJ, Djangaliev AD, Aldwinckle HS (1997) Collecting and managing wild Malus germplasm in its center of diversity. HortScience 32:173–176Google Scholar
  19. Iezzoni AF, Pritts MP (1991) Applications of principal component analysis to horticultural research. HortScience 26:334–338Google Scholar
  20. Khoshbakht K, Hammer K (2006) Savadkouh (Iran)—an evolutionary centre for fruit trees and shrubs. Genet Resour Crop Evol 53:641–651Google Scholar
  21. Langenfelds V (1991) Apple-trees—morphological evolution, phylogeny, geography, systematics., University of Latvia, RigaGoogle Scholar
  22. Li Y (1996) A critical review of the species and the taxonomy of Malus Mill. in the world. J Fruit Sci 13:63–81Google Scholar
  23. Luby J, Forsline OL, Aldwinckle H, Bus V, Geibel M (2001) Silk road apples—collection, evaluation, and utilization of Malus sieversii from Central Asia. HortScience 36:225–231Google Scholar
  24. Matsumoto S, Yamada K, Shratake K, Okada K, Abe K (2010) Structural and functional analyses of two new S-RNase alleles, Ssi5 and Sad5, in apple. J Hortic Sci Biotechnol 85:131–136Google Scholar
  25. Pereira-Lorenzo S, Ramos-Cabrer AM, Ascasibar-Errasti J (2003) Analysis of apple germplasm in Northwestern Spain. J Am Soc Hort Sci 128:67–84Google Scholar
  26. Ponomarenko VV (1975) Materials to the knowledge of apple-trees of the Caucasus. Botaničeskij Žurnal 60:53–68 (in Russian)Google Scholar
  27. Ponomarenko VV (1987) History of Malus domestica Borkh. Origin and evolution. Bot J USSR 176:10–18 (in Russian)Google Scholar
  28. Ponomarenko VV (1992) Malus orientalis Uglitz. as a source of resitance to diseases. Res Bull All Russ Inst Plant Indust 227:41–46 (in Russian)Google Scholar
  29. Qian GZ, Liu LF, Tang GG (2006) A new section in Malus (Rosaceae) from China. Annales Botanici Fennici 43:68–73Google Scholar
  30. Rechinger KH (1963–2001) Flora Iranica. Akademische Druck- und Verlagsanstalt, GrazGoogle Scholar
  31. Rehder A (1920) New species, varieties and combinations. J Arnold Arboretum 2:47–58Google Scholar
  32. Rehder A (1927) Manual of the cultivated trees and shrubs. Macmillan, New YorkGoogle Scholar
  33. Rehder A (1949) Bibliography of cultivated trees and shrubs. The Arnold Arboretum of Harvard University, Jamaica PlainGoogle Scholar
  34. Robinson JP, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58CrossRefGoogle Scholar
  35. Schmidt PA (2006) Bäume und Sträucher Kaukasiens. Mitt Dtsch Dendrol Ges 91:21–56Google Scholar
  36. UPOV (1995) Guidelines for the conduct of tests for distinctness, uniformity and stability (apple). TG/14/8, 1995Google Scholar
  37. Ûzenčuk SW (1939) Home Malus Mill. Flora SSSR 9:492 (in Russian)Google Scholar
  38. van Hintum TJL, Brown AHD, Spillane C, Hodgkin T (2000) Core collections of plant genetic resources. IPGRI Technical Bulletin, 2000, No. 3Google Scholar
  39. Vartapetyan VV, Akhvlediani SN (1990) Study of polymorphism in Malus orientalis Uglietzk. in western and eastern Georgia. Soobshcheniya Akademii Nauk Gruzinskoi SSR 137(2):373–376Google Scholar
  40. Vavilov NI (1930) Wild progenitors of the fruit trees of Turkestan and the Caucasus and the problem of the origin of fruit trees. In: Rep. Proc. 9th Intl. Hort Congr., pp 271–286Google Scholar
  41. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagne D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel C-E, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefGoogle Scholar
  42. Volk GM, Richards CM, Reiley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hort Sci 130:203–210Google Scholar
  43. Volk GM, Richards CM, Reiley AA, Henk AD, Forsline PL, Aldwinckle HS (2008) Genetic diversity and disease resistance of wild Malus orientalis from Turkey and Southern Russia. J Am Soc Hort Sci 133:383–389Google Scholar
  44. Volk GM, Richards CM, Henk AD, Reiley AA, Reeves PA, Forsline PL, Aldwinckle HS (2009) Capturing the diversity of wild Malus orientalis from Georgia, Armenia, Russia and Turkey. J Am Soc Hort Sci 134:453–459Google Scholar
  45. Wiedow C (2006) Characterization of phenotypic and molecular diversity in offsprings of Malus sieversii (Ledeb.) Roem. As basis for a core collection of apple genetic resources. Thesis, Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  46. Zhou ZQ (1999) The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilization. Genet Resour Crop Evol 46:599–609CrossRefGoogle Scholar
  47. Zhukovsky PM (1965) Main gene centres of cultivated plants and their wild relatives within the territory of the U.S.S.R. Euphytica 14:177–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Monika Höfer
    • 1
  • Henryk Flachowsky
    • 1
  • Magda-Viola Hanke
    • 1
  • Valentin Semënov
    • 2
  • Anna Šlâvas
    • 2
  • Irina Bandurko
    • 2
  • Artëm Sorokin
    • 2
  • Sergej Alexanian
    • 2
  1. 1.Julius Kühn-Institute, Federal Research Centre for Cultivated PlantsInstitute for Breeding Research on Horticultural and Fruit CropsDresdenGermany
  2. 2.Nikolaj I. Vavilov Research Institute of Plant IndustrySaint PetersburgRussia

Personalised recommendations