Genetic Resources and Crop Evolution

, Volume 60, Issue 4, pp 1209–1222 | Cite as

EST-SSR markers reveal synonymies, homonymies and relationships inconsistent with putative pedigrees in chestnut cultivars

  • Tim McCleary
  • Mary McAllister
  • Mark Coggeshall
  • Jeanne Romero-SeversonEmail author
Research Article


Over the last two centuries, chestnut breeding programs in Europe and Asia have generated an array of chestnut interspecific hybrids, primarily of European (Castanea sativa), Japanese (C. crenata) and Chinese (C. mollissima) ancestry. During this same period, Europeans colonizing North America imported hybrid chestnuts and made interspecific hybrids with native chestnuts, primarily American chestnut (C. dentata). The importation of Chinese chestnut into the United States in the late 19th century also introduced chestnut blight, which triggered an additional interspecific hybridization effort in an attempt to develop blight resistant American chestnuts. Chestnut cultivars used for nut production in the United States and Canada have arisen against this background of non-native introductions and extensive hybridizing. The development of regionally adapted nut producing trees with dependable crops of high quality nuts requires sorting out the identities of existing cultivars. We chose 11 EST-SSR markers from C. mollissima for the initial task of genotyping 65 chestnut cultivars that grow well in the central United States. Many of these cultivars have interspecific pedigrees involving two or more species. We found extensive homonymies and synonymies, genetic groups inconsistent with published pedigrees, contradictory pedigrees and evidence for incorrect species assignments. Accurate inference of the interspecific ancestries of cultivars grown in the United States and Canada will require genotyping of species reference sets for C. sativa, C. crenata, C. mollissima, C. dentata and possibly C. pumila (the Ozark and Allegheny chinquapins).


Chestnut cultivars Castanea EST-SSR Interspecific hybrids 



The authors thank Rory Carmichael (Notre Dame Bioinformatics Core Facility) for assistance with bioinformatics and Brent Harker (Notre Dame Genomics Core Facility) for ABI3730xl services. This work was funded through the University of Missouri Center for Agroforestry under cooperative agreement 58-6227-9-059 with the USDA Agricultural Research Service (ARS). Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the United States Department of Agriculture.

Supplementary material

10722_2012_9912_MOESM1_ESM.pdf (576 kb)
Supplementary material 1 (PDF 575 kb)
10722_2012_9912_MOESM2_ESM.docx (49 kb)
Supplementary material 2 (DOCX 48 kb)


  1. Anagnostakis SL (1982) Biological control of chestnut blight. Science 215(4532):466–471. doi: 10.1126/science.215.4532.466 PubMedCrossRefGoogle Scholar
  2. Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:23–27CrossRefGoogle Scholar
  3. Anagnostakis SL (2007) Chestnut breeding in the United States. The connecticut agricultural experiment station. Accessed 22 April 2012
  4. Bailey LH (1900) Chestnut. In: Bailey LH, Miller W (eds) Cyclopedia of American horticulture, vol C. MacMillian Co., New York, pp 294–297Google Scholar
  5. Bassil N, Boccacci P, Botta R, Postman J, Mehlenbacher S (2012) Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Genet Resour Crop Evol. doi: 10.1007/s10722-012-9857-z
  6. Celton J-M, Chagné D, Tustin S, Terakami S, Nishitani C, Yamamoto T, Gardiner S (2009) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2(1):1–7. doi: 10.1186/1756-0500-2-182 CrossRefGoogle Scholar
  7. Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. TAG Theor Appl Genet 121(8):1569–1585. doi: 10.1007/s00122-010-1411-9 CrossRefGoogle Scholar
  8. Clapper R (1954) Chestnut breeding, techniques and results. J Hered 45(4):201–208Google Scholar
  9. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobotany 13(3):161–179. doi: 10.1007/s00334-004-0038-7 Google Scholar
  10. Dane F, Lang P, Huang H, Fu Y (2003) Intercontinental genetic divergence of Castanea species in eastern Asia and eastern North America. Heredity 91(3):314–321PubMedCrossRefGoogle Scholar
  11. Decroocq V, Favé MG, Hagen L, Bordenave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106(5):912–922. doi: 10.1007/s00122-002-1158-z PubMedGoogle Scholar
  12. Detlefsen JA, Ruth WA (1922) An orchard of chestnut hybrids. J Hered 13(7):305–314Google Scholar
  13. Dinis L-TJ, Peixoto F, Costa R, Gomes-Laranjo J (2010) Molecular characterization of ‘Judia’ (Castanea sativa Mill.) from several Trás-os-Montes regions by nuclear microsatellite markers. Acta Hort (ISHS) 866:225–232Google Scholar
  14. Durand J, Bodenes C, Chancerel E, Frigerio J-M, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn H-P, Villani F, Mattioni C, Cherubini M, Goicoechea P, Herran A, Ikaran Z, Cabane C, Ueno S, Alberto F, Dumoulin P-Y, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11(1):570PubMedCrossRefGoogle Scholar
  15. Ellis J, Burke J (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99(2):125–132PubMedCrossRefGoogle Scholar
  16. Feng S, Li W, Huang H, Wang J, Wu Y (2009) Development, characterization and cross-species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23(1):85–97. doi: 10.1007/s11032-008-9216-0 CrossRefGoogle Scholar
  17. Fraser LG, Harvey CF, Crowhurst RN, De Silva HN (2004) EST-derived microsatellites from Actinidia species and their potential for mapping. Theor Appl Genet 108:1010–1016PubMedCrossRefGoogle Scholar
  18. Fulbright DW, Mandujano M, Stadt S (2010) Chestnut production in Michigan. Acta Horticulturae 866:531–553Google Scholar
  19. Gadaleta A, Giancaspro A, Zacheo S, Nigro D, Giove SL, Colasuonno P, Blanco A (2011) Comparison of genomic and EST-derived SSR markers in phylogenetic analysis of wheat. Plant Genet Res 9(02):243–246. doi: 10.1017/S147926211100030X CrossRefGoogle Scholar
  20. Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni A, Stover E, Bell R, Wisniewski M, Korban S (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23(3):397–411. doi: 10.1007/s11032-008-9243-x CrossRefGoogle Scholar
  21. Glover JD, Reganold JP, Bell LW, Borevitz J, Brummer EC, Buckler ES, Cox CM, Cox TS, Crews TE, Culman SW, DeHaan LR, Eriksson D, Gill BS, Holland J, Hu F, Hulke BS, Ibrahim AMH, Jackson W, Jones SS, Murray SC, Paterson AH, Ploschuk E, Sacks EJ, Snapp S, Tao D, Van Tassel DL, Wade LJ, Wyse DL, Xu Y (2010) Increased food and ecosystem security via perennial grains. Science 328(5986):1638–1639. doi: 10.1126/science.1188761 PubMedCrossRefGoogle Scholar
  22. Gobbin D, Hohl L, Conza L, Jermini M, Gessler C, Conedera M (2007) Microsatellite-based characterization of the Castanea sativa cultivar heritage of southern Switzerland. Genome 50(12):1089–1103. doi: 10.1139/g07-086 PubMedCrossRefGoogle Scholar
  23. Gökirmak T, Mehlenbacher S, Bassil N (2009) Characterization of European hazelnut (Corylus avellana) cultivars using SSR markers. Genet Resour Crop Evol 56(2):147–172. doi: 10.1007/s10722-008-9352-8 CrossRefGoogle Scholar
  24. Hoban S, Romero-Severson J (2011) Homonymy, synonymy and hybrid misassignments in butternut (Juglans cinerea) and Japanese walnut (Juglans ailantifolia) nut cultivars. Genet Resour Crop Evol 1–9. doi: 10.1007/s10722-011-9767-5
  25. Hoban SM, McCleary TS, Schlarbaum SE, Romero-Severson J (2009) Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol Lett 5(3):324–327PubMedCrossRefGoogle Scholar
  26. Hoban SM, McCleary TS, Schlarbaum SE, Anagnostakis SL, Romero-Severson J (2012) Human-impacted landscapes facilitate hybridization between a native and an introduced tree. Evol Appl 5(7):720–731. doi: 10.1111/j.1752-4571.2012.00250.x Google Scholar
  27. Huang H, Dane F, Norton JD (1994) Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theor Appl Genet 88(8):981–985. doi: 10.1007/bf00220805 CrossRefGoogle Scholar
  28. Hunt KL, Gold MA, Warmund MR (2005) Chinese chestnut cultivar performance in Missouri. Acta Hortic (ISHS) 693:145–148Google Scholar
  29. Jaillon O, Aury J-M, Characterization TFIPCfGG (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467. Google Scholar
  30. Jaynes RA (1970) Chestnuts. In: Jaynes RA (ed) Nut tree culture in North America. Northern Nut Growers Association, Camden, pp 111–127Google Scholar
  31. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106PubMedCrossRefGoogle Scholar
  32. Li X, Zhou X, Zhou J, Dodson J, Zhang H, Shang X (2007) The earliest archaeobiological evidence of the broadening agriculture in China recorded at Xishanping site in Gansu Province. Sci China, Ser D Earth Sci 50(11):1707–1714. doi: 10.1007/s11430-007-0066-0 CrossRefGoogle Scholar
  33. Martin M, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic diversity in European chestnut populations by means of genomic and genic microsatellite markers. Tree Genet Genomes 6(5):735–744. doi: 10.1007/s11295-010-0287-9 CrossRefGoogle Scholar
  34. Martín MA, Mattioni C, Cherubini M, Taurchini D, Villani F (2010) Genetic characterisation of traditional chestnut varieties in Italy using microsatellites (simple sequence repeats) markers. Annals of Applied Biology 157(1):37–44. doi: 10.1111/j.1744-7348.2010.00407.x CrossRefGoogle Scholar
  35. Masaki N (1983) The emergence of food production in Neolithic Japan. J Anthropol Archaeol 2(4):305–322. doi: 10.1016/0278-4165(83)90012-0 CrossRefGoogle Scholar
  36. Mattioni C, Cherubini M, Taurchini D, Villani F, Martin MA (2010) Genetic diversity in European chestnut populations. Acta Hortic 866:163–167Google Scholar
  37. Maynard CA, Powell WA, Polin-McGuigan LD, Viéitez AM, Ballester A, Corredoira E, Merkle SA, Andrade GM (2009) Chestnut. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 4. Wiley, Hoboken. doi: 10.1002/9781405181099.k0905
  38. Mellano M, Beccaro G, Donno D, Marinoni D, Boccacci P, Canterino S, Cerutti A, Bounous G (2012) Castanea spp. biodiversity conservation: collection and characterization of the genetic diversity of an endangered species. Genet Resour Crop Evol 1–15. doi: 10.1007/s10722-012-9794-x
  39. Paillet FL (2002) Chestnut: history and ecology of a transformed species. J Biogeogr 29(10–11):1517–1530CrossRefGoogle Scholar
  40. Payne J, Jaynes R, Kays S (1983) Chinese chestnut production in the United States: practice, problems, and possible solutions. Econ Bot 37(2):187–200. doi: 10.1007/bf02858784 CrossRefGoogle Scholar
  41. Pereira-Lorenzo S, Costa R, Ramos-Cabrer A, Ribeiro C, da Silva M, Manzano G, Barreneche T (2010) Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genet Genomes 6(5):701–715. doi: 10.1007/s11295-010-0285-y CrossRefGoogle Scholar
  42. Powell GH (1899) The European and Japanese chestnuts in the Eastern United States. Bulletin XLII, NewarkGoogle Scholar
  43. Preston JC, Hileman LC, Cubas P (2011) Reduce, reuse, and recycle: developmental evolution of trait diversification. Am J Bot 98(3):397–403. doi: 10.3732/ajb.1000279 PubMedCrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedGoogle Scholar
  45. Qin L, Feng YQ, Xu HM, Dong QH, Gao XH (2005) The diversity of Castanea resources and cultivars improvement in China. Acta Hortic 693:421–430Google Scholar
  46. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  47. Russell EWB (1987) Pre-blight distribution of Castanea dentata (Marsh.) Borkh. Bull Torrey Bot Club 114(2):183–190CrossRefGoogle Scholar
  48. Rutter PA, Miller G, Payne JA (1991) Chestnuts (Castanea). Genetic Resources of Temperate Fruit and Nut Crops. ISHS Acta Horticulturae, LeuvenGoogle Scholar
  49. Smith J, Pearce BD, Wolfe MS (2012) A European perspective for developing modern multifunctional agroforestry systems for sustainable intensification. Renew Agric Food Syst 27(4):323–332. doi: 10.1017/S1742170511000597
  50. Studer B, Kolliker R, Muylle H, Asp T, Frei U, Roldan-Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skot L, Armstead I, Dolstra O, Lubberstedt T (2010) EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol 10(1):177PubMedCrossRefGoogle Scholar
  51. Tanaka T, Yamamoto T, Suzuki M (2005) Genetic diversity of Castanea crenata in Northern Japan assessed by SSR markers. Breed Sci 55:271–277CrossRefGoogle Scholar
  52. Warmund MR (2011) Chinese chestnut (Castanea mollissima) as a Niche crop in the Central Region of the United States. HortScience 46(3):345–347Google Scholar
  53. Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Developmenrt of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3(1):42PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Tim McCleary
    • 1
  • Mary McAllister
    • 1
  • Mark Coggeshall
    • 2
  • Jeanne Romero-Severson
    • 1
    Email author
  1. 1.Department of Biological SciencesUniversity of Notre DameNotre DameUSA
  2. 2.Center for AgroforestryUniversity of MissouriColumbiaUSA

Personalised recommendations