Genetic Resources and Crop Evolution

, Volume 59, Issue 7, pp 1295–1302 | Cite as

The co-evolutionary perspective of the food-medicine continuum and wild gathered and cultivated vegetables

  • Marco LeontiEmail author
Short Communication


Accumulated evidence suggests that our genes are still adapted to a pre-agriculturalist diet, which was devoid of refined sugars and dairy products and that our modern dietary behaviour is in great part responsible for several modern life style diseases. Especially the consumption of fruits, spices and vegetables, cultivated or gathered from the wild, are perceived as being healthy or endowed with a prophylactic effect and therefore many of these dietary items are regarded as both at the same time: food and medicine. I argue that green leafy vegetables began to contribute substantially to the human diet only with the beginning of agriculture, when the ecological niche of weeds began to prosper. Wild gathered vegetables added to the agriculturalists’ dietary need in form of a back-up resource in times of shortage and in form of micronutrients and allelochemicals promoting the development of the modern pharmacopoeias. Similarly to wild gathered foods are cultivated staples recently getting more attention by phytochemists and pharmacologists. Especially local cultivars and agro-ecotypes may present interesting opportunities for phytochemical and pharmacological analysis in the attempt of identifying bioactive dietary allelochemicals. Chemical and biological characterization of local crop cultivars serves for the selection of varieties with specific nutraceutical properties. Germplasm can be obtained from several local organizations, which arrange easy access to seeds and products of rare crop cultivars, foster their commercialization and secure catering through the conservation of agro-biodiversity.


Agro-biodiversity Beta-caryophyllen Cannabinoid receptor Falcarinol Glucosinolates Neolithic diet Nutraceuticals 


  1. Bartha-Pichler B, Brunner F, Gersbach K (2005) Rosenapfel und Goldparmäne—Eine Entdeckungsreise durch die Vielfalt alter und neuer Apfelsorten. ProSpecieRara und Fructus, AT-Verlag, AarauGoogle Scholar
  2. Bartha-Pichler B, Frei M, Kajtna B, Zuber M (2006) Osterfee und Amazone. Vergessene Beerensorten—neu entdeckt. ProSpecieRara und Arche-Noah, AT-Verlag, AarauGoogle Scholar
  3. Bonet MA, Vallès J (2002) Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula). Int J Food Sci Nutr 53:225–248PubMedCrossRefGoogle Scholar
  4. Borbach C, Egloff B, ProSpecieRara (2002) Tschüpperli, Stiefelgeiss und andere Raritäten. Das Tierbuch mit allen ProSpecieRara Nutztierrassen. ProSpecieRara, AarauGoogle Scholar
  5. Brandt K, Christensen LP, Hansen-Møller J, Hansen SL, Haraldsdottir J, Jespersen L, Purup S, Kharazmie A, Barkholt V, Frøkiærf H, Kobæk-Larsen M (2004) Health promoting compounds in vegetables and fruits: a systematic approach for identifying plant components with impact on human health. Trends Food Sci Technol 15:384–393CrossRefGoogle Scholar
  6. Cai Y, Jia J-W, Crock J, Lin Z-X, Chen X-Y, Croteau R (2002) A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry 61:523–529PubMedCrossRefGoogle Scholar
  7. Carlson DG, Daxenbichler ME, VanEtten CH (1987) Glucosinolates in crucifer vegetables: broccoli, brussels sprouts, cauliflower, collards, kale, mustard greens, and kohlrabi. J Amer Soc Hort Sci 112:173–178Google Scholar
  8. Carrera-Bastos P, Fontes-Villalba M, O’Keefe JH, Lindeberg S, Cordain L (2011) The western diet and lifestyle and diseases of civilization. Res Rep Clin Cardiol 2:15–35CrossRefGoogle Scholar
  9. Chen Q, Li YL, McKinney KA, Kuwata M, Martin ST (2012) Particle mass yield from β-caryophyllene ozonolysis. Atmos Chem Phys 12:3165–3179CrossRefGoogle Scholar
  10. Cheng A-X, Xiang C-Y, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Lou Y-G, Chen X-Y (2007) The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68:1632–1641PubMedCrossRefGoogle Scholar
  11. Christensen LP (2011) Aliphatic C17-polyacetylenes of the falcarinol type as potential health promoting compounds in food plants of the Apiaceae family. Recent Pat Food Nutr Agric 3:64–77Google Scholar
  12. Christensen LP, Brandt K (2006) Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. J Pharm Biomed Anal 41:683–693PubMedCrossRefGoogle Scholar
  13. Cordain L (2002) The nutritional characteristics of a contemporary diet based upon Paleolithic food groups. J Am Nutr Assoc 5:15–24Google Scholar
  14. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, O’Keefe JH, Brand-Miller J (2005) Origins and evolution of the western diet: health implications for the 21st century. Am J Clin Nutr 81:341–354PubMedGoogle Scholar
  15. Eaton SB (2000) Paleolithic vs. modern diets—selected pathophysiological implications. Eur J Nutr 39:67–70PubMedCrossRefGoogle Scholar
  16. Eaton SB, Konner M (1985) Paleolithic nutrition. A consideration of its nature and current implications. N Engl J Med 312:283–289PubMedCrossRefGoogle Scholar
  17. Eaton SB, Strassman BI, Nesse RM, Neel JV, Ewald PW, Williams GC, Weder AB, Eaton SB III, Lindeberg S, Konner MJ, Mysterud I, Cordain L (2002) Evolutionary health promotion. Prev Med 34:109–118PubMedCrossRefGoogle Scholar
  18. Etkin N (1996) Medicinal cuisines: diet and ethnopharmacology. Int J Pharmacog 34:313–326CrossRefGoogle Scholar
  19. Etkin N (2006) Edible medicines. An ethnopharmacology of food. The University of Arizona Press, TucsonGoogle Scholar
  20. Etkin NL, Ross PJ (1982) Food as medicine and medicine as food. An adaptive framework for the interpretation of plant utilization among Hausa of Northern Nigeria. Soc Sci Med 16:1559–1573PubMedCrossRefGoogle Scholar
  21. Etkin NL, Ross PJ (1991) Should we set a place for diet in ethnopharmacology? J Ethnopharmacol 32:25–36PubMedCrossRefGoogle Scholar
  22. European Food Safety Authority “EFSA” (2009) Water-soluble tomato concentrate (WSTC I and II) and platelet aggregation. EFSA J 1101:1–15.
  23. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Tercé F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433PubMedGoogle Scholar
  24. Gertsch J (2008) Anti-inflammatory cannabinoids in diet: towards a better understanding of CB2 receptor action? Commun Integr Biol 1:26–28PubMedCrossRefGoogle Scholar
  25. Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Zimmer A, Karsak M (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105:9099–9104PubMedCrossRefGoogle Scholar
  26. Gertsch J, Pertwee RG, Di Marzo V (2010) Phytocannabinoids beyond the Cannabis plant—do they exist? Br J Pharmacol 160:523–529PubMedCrossRefGoogle Scholar
  27. González JA, García-Barriuso M, Amich F (2011) The consumption of wild and semi-domesticated edible plants in the Arribes del Duero (Salamanca-Zamora, Spain): an analysis of traditional knowledge. Genet Resour Crop Evol 58:991–1006CrossRefGoogle Scholar
  28. Guindon J, Hohmann AG (2008) Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br J Pharmacol 153:319–334PubMedCrossRefGoogle Scholar
  29. Hammer K, Laghetti G (2005) Genetic erosion—examples from Italy. Genet Resour Crop Evol 52:629–634CrossRefGoogle Scholar
  30. Hammer K, Knüpffer H, Laghetti G, Perrino P (1999) Seeds from the Past. A catalogue of crop germplasm in central and north Italy. IdG (C.N.R.), BariGoogle Scholar
  31. Harlan JR (1992) Crops & man, 2nd edn. American Society of Agronomy, Inc. Crop Science Society of America, Inc. Madison, WIGoogle Scholar
  32. Heinrich M, Prieto JM (2008) Diet and healthy ageing 2100: will we globalise local knowledge systems? Ageing Res Rev 7:249–274PubMedCrossRefGoogle Scholar
  33. Heinrich M, Nebel S, Leonti M, Rivera D, Obón C (2006) “Local food-nutraceuticals”: bridging the gap between local knowledge and global needs. Forum Nutr 59:1–17PubMedCrossRefGoogle Scholar
  34. Heistinger A (2010) Handbuch Samengärtnerei. Sorten erhalten, Vielfalt vermehren, Gemüse geniessen. Arche Noah und ProSpecieRara. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  35. Heywood VH, Zohary D (1995) A catalogue of the wild relatives of cultivated plants native to Europe. Flora Med 5:375–415Google Scholar
  36. International Treaty on Plant Genetic Resources for Food and Agriculture (2012) Accessed 18 April 2012
  37. Izzo AA, Camilleri M (2008) Emerging role of cannabinoids in gastrointestinal and liver diseases: basic and clinical aspects. Gut 57:1140–1155PubMedCrossRefGoogle Scholar
  38. Jacomet SC, Brombacher C, Dick M (1989) Archäobotanik am Zürichsee. Ackerbau Sammelwirtschaft und Umwelt von Neolithischen und Bronzezeitlichen Seeufersiedlungen im Raum Zürich. Orell Füssli Verlag, ZürichGoogle Scholar
  39. Johns T (1990) With bitter herbs they shall eat it: chemical ecology and the origins of human diet and medicine. The University of Arizona Press, TucsonGoogle Scholar
  40. Kammerer D, Carle R, Schieber A (2004) Characterization of phenolic acids in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 18:1331–1340PubMedCrossRefGoogle Scholar
  41. Kim S, Karl T, Helmig D, Daly R, Rasmussen R, Guenther A (2009) Measurement of atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS). Atmos Meas Tech 2:99–112CrossRefGoogle Scholar
  42. Kim JK, Chu SM, Kim SJ, Lee DJ, Lee SY, Lim SH, Ha S-H, Kweon SJ, Cho HS (2010) Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp. pekinensis. Food Chem 119:423–428CrossRefGoogle Scholar
  43. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280CrossRefGoogle Scholar
  44. Köllner TG, Held M, Lenk C, Hiltpold I, Turlings TCJ, Gershenzon J, Degenhardta J (2008) A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494PubMedCrossRefGoogle Scholar
  45. Kurilich AC, Clevidence BA, Britz SJ, Simon PW, Novotny JA (2005) Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 53:6537–6542PubMedCrossRefGoogle Scholar
  46. Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548PubMedCrossRefGoogle Scholar
  47. Leonti M, Nebel S, Rivera D, Heinrich M (2006) Wild gathered food plants in the European Mediterranean: a comparative analysis. Econ Bot 60:130–142CrossRefGoogle Scholar
  48. Leonti M, Cabras S, Weckerle CS, Solinas MN, Casu L (2010a) The causal dependence of present plant knowledge on herbals—contemporary medicinal plant use in Campania (Italy) compared to Matthioli (1568). J Ethnopharmacol 130:379–391PubMedCrossRefGoogle Scholar
  49. Leonti M, Casu L, Raduner S, Cottiglia F, Floris C, Altmann KH, Gertsch J (2010b) Falcarinol is a covalent cannabinoid CB1 receptor antagonist and induces pro-allergic effects in skin. Biochem Pharmacol 79:1815–1826PubMedCrossRefGoogle Scholar
  50. Lindeberg S (2010) Food and western disease. Health and nutrition from an evolutionary perspective. Blackwell, OxfordGoogle Scholar
  51. Logan MH, Dixon AR (1994) Agriculture and the acquisition of medicinal plant knowledge. In: Etkin NL (ed) Eating on the wild side. University of Arizona Press, Tucson, pp 25–45Google Scholar
  52. Mann NJ (2004) Paleolithic nutrition: what can we learn from the past? Asia Pac J Clin Nutr 13(S):17Google Scholar
  53. Maurizio A (1927) Die Geschichte unserer Nahrungspflanzen. Von den Urzeiten bis zur Gegenwart. Verlagsbuchhandlung Paul Parey, BerlinGoogle Scholar
  54. McPartland JM, Agraval J, Gleeson D, Heasman K, Glass M (2006) Cannabinoid receptors in invertebrates. J Evol Biol 19:366–373PubMedCrossRefGoogle Scholar
  55. Meghvansi MK, Siddiqui S, Khan MH, Gupta VK, Vairale MG, Gogoi HK, Singh L (2010) Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J Ethnopharmacol 132:1–14PubMedCrossRefGoogle Scholar
  56. Metzger BT, Barnes DM, Reed JD (2008) Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells. J Agric Food Chem 56:3554–3560PubMedCrossRefGoogle Scholar
  57. Mithen R (2006) Sulphur-containing compounds. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites. Occurrence, structure and role in the human diet. Blackwell Publishing, Oxford, pp 25–46Google Scholar
  58. Moerman DE (1994) North American food and drug plants. In: Etkin NL (ed) Eating on the wild side. University of Arizona Press, Tucson, pp 166–181Google Scholar
  59. Montesano V, Negro D, Sarli G, Logozzo G, Spagnoletti Zeuli P (2011) Landraces in Inland areas of the Basilicata region, Italy: monitoring and perspectives for on farm conservation. Genet Resour Crop Evol. doi: 10.1007/s10722-011-9712-7
  60. Murdoch SR, Dempster J (2000) Allergic contact dermatitis from carrot. Contact Dermatitis 42:236PubMedGoogle Scholar
  61. Nievergelt A, Marazzi J, Schoop R, Altmann KH, Gertsch J (2011) Ginger phenylpropanoids inhibit IL-1beta and prostanoid secretion and disrupt arachidonate-phospholipid remodeling by targeting phospholipases A2. J Immunol 187:4140–4150PubMedCrossRefGoogle Scholar
  62. O’Kennedy N, Crosbie L, Whelan S, Luther V, Horgan G, Broom JI, Webb DJ, Duttaroy AK (2006a) Effects of tomato extract on platelet function: a double-blinded crossover study in healthy humans. Am J Clin Nutr 84:561–569PubMedGoogle Scholar
  63. O’Kennedy N, Crosbie L, van Lieshout M, Broom JI, Webb DJ, Duttaroy AK (2006b) Effects of antiplatelet components of tomato extract on platelet function in vitro and ex vivo: a time-course cannulation study in healthy humans. Am J Clin Nutr 84:570–579PubMedGoogle Scholar
  64. Pieroni A, Nebel S, Quave C, Münz H, Heinrich M (2002) Ethnopharmacology of Liakra: traditional weedy vegetables of the Abërëshe of the vulture area in southern Italy. J Ethnopharmacol 81:165–185PubMedCrossRefGoogle Scholar
  65. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  66. Rivera D, Heinrich M, Obon C, Inocencio C, Nebel S, Verde A, Fajardo J (2006) Disseminating knowledge about “local foods plants” and “local plant foods”. Forum Nutr 59:75–85PubMedCrossRefGoogle Scholar
  67. Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in Crop Plants. Hort Rev 19:99–215Google Scholar
  68. Schäfer D (2005) Aging, longevity, and diet: historical remarks on calorie intake reduction. Gerontology 51:126–130PubMedCrossRefGoogle Scholar
  69. Stepp JR, Moerman DE (2001) The importance of weeds in ethnopharmacology. J Ethnopharmacol 75:19–23PubMedCrossRefGoogle Scholar
  70. Szalatnay D, Kellerhals M, Frei M, Müller U (2011) Früchte, Beeren, Nüsse—Die Vielfalt der Sorten—800 Portraits. Haupt Verlag, BernGoogle Scholar
  71. Valussi M (2011) Functional foods with digestion-enhancing properties. Int J Food Sci Nutr 63:82–89PubMedCrossRefGoogle Scholar
  72. Vissiennon C, Nieber K, Kelber O, Butterweck V (2012) Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin—are they prodrugs? J Nutr Biochem 7:733–740CrossRefGoogle Scholar
  73. White B, Judkins DZ (2011) Clinical inquiry. Does turmeric relieve inflammatory conditions? J Fam Pract 60:155–156PubMedGoogle Scholar
  74. Willerding U (1986) Zur Geschichte der Unkräuter Mitteleuropas. Göttinger Schriften zur Vor- und Frühgeschichte, Band 22. Karl Wachholtz Verlag, NeumünsterGoogle Scholar
  75. Yang B, Quiros CF (2010) Survey of glucosinolate variation in leaves of Brassica rapa crops. Genet Resour Crop Evol 57:1079–1089CrossRefGoogle Scholar
  76. Yin H, Chu A, Li W, Wang B, Shelton F, Otero F, Nguyen DG, Caldwell JS, Chen YA (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin Path Hunter assay. J Biol Chem 284:12328–12338PubMedCrossRefGoogle Scholar
  77. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89:2399–2403PubMedCrossRefGoogle Scholar
  78. Zidorn C, Joehrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H (2005) Polyacetylenes from Apiaceae vegetables carrot, celery, fennel, parsley and parsnip and their cytotoxic activities. J Agric Food Chem 53:2518–2523PubMedCrossRefGoogle Scholar
  79. Zohary D, Hopf M (2000) Domestication of plants in the Old World: the origin and spread of cultivated plants in West Asia, Europe and the Nile Valley, 3rd edn. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento Farmaco Chimico Tecnologico, Facoltà di FarmaciaUniversità di CagliariCagliariItaly

Personalised recommendations