Skip to main content

Advertisement

Log in

Diversity of the European indigenous wild apple (Malus sylvestris (L.) Mill.) in the East Ore Mountains (Osterzgebirge), Germany: II. Genetic characterization

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

In the present study genetic diversity and hybridization with cultivars were investigated in a population of the endangered European wild apple species Malus sylvestris (L.) Mill. with the aim to establish a basis for the implementation of conservation activities and to ensure its long-term preservation. A total of 284 putative M. sylvestris trees located in the East Ore Mountains were investigated along with a standard set of reference apple genotypes proposed by the European Cooperative Program for Plant Genetic Resources (ECPGR) and 13 old apple cultivars often cultivated in Saxony. The genetic analysis was performed using 12 microsatellite markers also recommend by the ECPGR. To differentiate ‘true type’ M. sylvestris individuals, hybrids and apple cultivars (Malus × domestica Borkh.) a model-based cluster analysis was performed using STRUCTURE. Two clusters were identified consisting of M. sylvestris and M. × domestica genotypes. About 40 % of the putative M. sylvestris showed an admixture of the species-specific allele frequencies and were defined as hybrids. The genetic diversity of the ‘true type’ M. sylvestris population was still high but slightly lower than in the apple cultivars especially since some SSR loci were fixed on one or few alleles in the M. sylvestris population. The differentiation parameters between ‘true type’ wild apple and cultivars indicated a clear discrimination between the wild and cultivated apple individuals. This fact confirms our expectation of the existence of ‘true type’ M. sylvestris individuals in the East Ore Mountains and argues for the realization of preservation measures in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ECPGR:

European Cooperative Program for Plant Genetic Resources

HWE:

Hardy–Weinberg equilibrium

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622

    Article  Google Scholar 

  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. Theor Appl Genet 106:703–714

    PubMed  CAS  Google Scholar 

  • Castiglione S, Cicatelli A, Lupi R, Patrignani G, Fossati T, Brundu G, Sabatti M, van Loo M, Lexer C (2010) Genetic structure and introgression in riparian populations of Populus alba L. Plant Biosyst 144:656–668

    Article  Google Scholar 

  • Cavanna M, Marinoni DT, Bounous G, Botta R (2008) Genetic diversity in ancient apple germplasm from northwest Italy. J Hortic Sci Biotech 83:549–554

    Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631

    Article  PubMed  CAS  Google Scholar 

  • Chybicki I, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  PubMed  CAS  Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldan-Ruiz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857

    Article  PubMed  CAS  Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity. In: Wild and cultivated plants. Springer, Berlin

  • Degen B (2008) GDA_NT 2.0: Genetic data analysis and numerical tests. Available from: bernd.degen@vti.bund.de

  • Dreesen RSG, Vanholme BTM, Luyten K, Van Wynsberghe L, Fazio G, Roldan-Ruiz I, Keulemans J (2010) Analysis of Malus S-RNase gene diversity based on a comparative study of old and modern apple cultivars and European wild apple. Mol Breed 26:693–709

    Article  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population-size—implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evans KM, Fernandez-Fernandez F, Laurens F, Feugey L, van de Weg WE (2007) Harmonising fingerprinting protocols to allow comparisons between germplasm collections—Malus/Pyrus. XIIth EUCARPIA Symposium on Fruit Breeding and Genetics. Zaragoza (Espagne) 16–20 September 2007 (poster)

  • Fellenberg U (2001) Beurteilung von Wildobst-Voraussetzung für geeignetes Vermehrungsgut zur Erhaltung von Waldgenressourcen. Forst und Holz 56:50–54

    Google Scholar 

  • Gharghani A, Zamani Z, Talaie A, Oraguzie NC, Fatahi R, Hajnajari H, Wiedow C, Gardiner SE (2009) Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Ev 56:829–842

    Article  CAS  Google Scholar 

  • Gregorius HR (1974) Genetischer Abstand zwischen Populationen. I. Zur Konzeption der genetischen Abstandsmessung. Silvae Genet 23:22–27

    Google Scholar 

  • Guarino C, Santoro S, De Simone L, Lain O, Cipriani G, Testolin R (2006) Genetic diversity in a collection of ancient cultivars of apple (Malus × domestica Borkh.) as revealed by SSR-based fingerprinting. J Hortic Sci Biotech 81:39–44

    CAS  Google Scholar 

  • Hedrick PW (2005) Genetics of populations. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  • Hoebee SE, Arnold U, Duggelin C, Gugerli F, Brodbeck S, Rotach P, Holderegger R (2007) Mating patterns and contemporary gene flow by pollen in a large continuous and a small isolated population of the scattered forest tree Sorbus torminalis. Heredity 99:47–55

    Article  PubMed  CAS  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97(5–6):671–683

    Article  CAS  Google Scholar 

  • Höltken AM, Tähtinen J, Pappinen A (2003) Effects of discontinuous marginal habitats on the genetic structure of common ash. Silvae Genet 52:206–212

    Google Scholar 

  • Kleinschmit J (1998) Erhaltung und Nutzung wertvoller Edellaubbaumarten. Forst und Holz 17:515–519

    Google Scholar 

  • Kleinschmit J, Stephan R (1997) Wild fruit trees. EUFORGEN Noble Hardwoods, Network, Reports, pp 51–59

  • Koopman WJM, Li YH, Coart E, De Weg EV, Vosman B, Roldan-Ruiz I, Smulders MJM (2007) Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Mol Ecol 16:243–256

    Article  PubMed  CAS  Google Scholar 

  • Larsen AS, Kjaer ED (2009) Pollen mediated gene flow in a native population of Malus sylvestris and its implications for contemporary gene conservation management. Conserv Genet 10:1637–1646

    Article  Google Scholar 

  • Larsen A, Asmussen C, Coart E, Olrik D, Kjær E (2006) Hybridization and genetic variation in Danish populations of European crab apple. J Tree Genet Genomes 2:86–97

    Article  Google Scholar 

  • Larsen AS, Jensen M, Kjaer ED (2008) Crossability between wild (Malus sylvestris) and cultivated (M. × domestica) apples. Silvae Genet 57:127–130

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10(4):217–241

    Article  CAS  Google Scholar 

  • Natzke E, Pech M (1998) Die seltenen Baumarten Wildbirne und Wildapfel in Sachsen-Anhalt. In: Kleinschmit J, Soppa B, Fellenberg U. Die Wildbirne, Pyrus pyraster (L.) Burgsd. Schriften der Forstlichen Fakultät der Universität Göttingen und der Niedersächsischen Forstlichen Versuchsanstalt 125: 113–114

  • Nei M (1972) Genetic distance between populations. Am Nat 106:p283

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. P Natl A Sci 70:3321–3323

    Article  CAS  Google Scholar 

  • Patzak P (2003) Förderung von Wildobst und Feldulme. Beitrag zum Erhalt der Artenvielfalt der Auewälder im Biosphärenreservat Flusslandschaft Mittlere Elbe. Naturwissenschaftliche Beiträge, Museum Dessau 15: 21–43

  • Paul M, Hinrichs T, Janssen A, Schmitt HP, Stephan BR, Dörflinge H (2000) Concept for the conservation and sustainable utilization of forest genetic resources in the Federal Republic of Germany. Sächsische Landesanstalt für Forsten, Pirna

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reim S, Flachowsky H, Michael M, Hanke MV (2006) Assessing gene flow in apple using a descendant of Malus sieversii var. sieversii f. niedzwetzkyana as an identifier for pollen dispersal. Environ Biosafety Res 5:89–104

    Article  PubMed  CAS  Google Scholar 

  • Reim S, Proft A, Heinz S, Höfer M (2011) Diversity of the European indigenous wild apple Malus sylvestris (L.) Mill. in the East Ore Mountains, Germany: I. Morphological characterization. Genet Resour Crop Evol. doi:10.1007/s10722-011-9746-x

  • Remmy K, Gruber F (1993) Untersuchung zur Verbreitung und Morphologie des Wild-Apfels (Malus sylvestris (L.) Mill.). Mitt Deut Dendr Gesells. 81:71–94

    Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization. Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Robinson J, Harris SA, Juniper BE (2001) Taxonomy of the genus Malus Mill. (Rosaceae) with emphasis on the cultivated apple, Malus domestica Borkh. Plant Syst Evol 226:35–58

    Article  CAS  Google Scholar 

  • Rosenthal G (2003) Bedeutung evolutionsbiologischer Prozesse für Landschaftsplanung und Naturschutz. Natur und Landschaft 78:497–506

    Google Scholar 

  • Sharma G, Bashir R (2007) Effect of different mode of pollination on fruit set and retention in apple (Malus x domestica) cultivars. Indian J Agr Sci 77:509–511

    Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh) genome. Tree Genet Genomes 2(4):202–224

    Article  Google Scholar 

  • Slotta TAB, Brady L, Chao S (2008) High throughput tissue preparation for large-scale genotyping experiments. Mol Ecol Resour 8:83–87

    Article  PubMed  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two rings. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256

    Article  Google Scholar 

  • Wagner I (1996) Zusammenstellung morphologischer Merkmale und ihrer Ausprägung zur Unterscheidung von Wild- und Kulturformen des Apfels (Malus) und des Birnbaumes (Pyrus). Mitt Deut Dendr Gesells. 82:87–108

    Google Scholar 

  • Wagner I (2006) Malus sylvestris. Enzyklopädie der Holzgewächse 42:1–16

    Google Scholar 

  • Watano Y, Kanai I, Tani N (2004) Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. Pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. Am J Bot 91:65–72

    Article  PubMed  CAS  Google Scholar 

  • Wright S (1951) Genetical structure of populations. Nature 166:247–249

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3):395–420

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, Chicago

    Google Scholar 

  • Yeh F, Yang R, Boyle T, Ye Z, Xian M (2000) Pogene version 1.31. University of Alberta, Edmonton

    Google Scholar 

Download references

Acknowledgments

This research project was financial supported by the Federal Agency for Agriculture and Food for (06BM 002/2). We thank very much all volunteers from the Green League East Ore Mountains e.V. for their extensive work on the Malus sylvestris trees in the East Ore Mountains. We also thank Claudia Wiedow for her helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Höfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reim, S., Höltken, A. & Höfer, M. Diversity of the European indigenous wild apple (Malus sylvestris (L.) Mill.) in the East Ore Mountains (Osterzgebirge), Germany: II. Genetic characterization. Genet Resour Crop Evol 60, 879–892 (2013). https://doi.org/10.1007/s10722-012-9885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-012-9885-8

Keywords

Navigation