Genetic Resources and Crop Evolution

, Volume 59, Issue 6, pp 1169–1184 | Cite as

Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding

  • Gelsomina Formisano
  • Cristina Roig
  • Cristina Esteras
  • Maria Raffaella Ercolano
  • Fernando Nuez
  • Antonio Jose Monforte
  • Maria Belen PicóEmail author
Research Article


Cucurbita pepo is a worldwide cultivated vegetable of American origin. Most of the widely grown commercial types are known as summer squashes and belong to the elongated forms of C. pepo ssp. pepo (Cocozelle, Vegetable marrow and Zucchini groups). These forms were developed in Europe after the arrival of the first American landraces through a process of selection and fixation that led to a loss of genetic diversity. Part of the genetic variability of the first American cultigens remains intact in diverse landraces that are still cultivated for self-consumption and sale in local markets. Using the first collection of genomic and EST-derived microsatellites that has just become available for the species, we compared the natural variation present in a collection of Spanish landraces with that of a set of commercial varieties and hybrids, representing current summer squash market offerings. A total of 194 alleles allowed us to distinguish all the genotypes, even those that were closely related. In general, Cocozelle and Vegetable marrow, groups with considerably long histories, were more variable than the Zucchini group, of more recent origin. We found significant genetic diversity among landraces. The variation present among landraces belonging to the Zucchini group was larger than that of the commercial cultivars. Cluster, principal coordinate and population structure results suggested that the variation of the Spanish landraces has not been extensively used in breeding. Commercial summer squashes can therefore benefit from this underexploited variability, especially from certain landraces that already display favourable commercial traits.


Breeding Cucurbita pepo Landraces Microsatellites Summer squash Zucchini 



This research was funded by Projects INIA (RTA2008-00035-C02-02 and RTA2011-00044-C02-2) of the Spanish Instituto Nacional de Investigación y Tecnología Agraria. G. Formisano was supported by the Italian Doctorate School in Agrobiology and Agrochemistry of the University of Naples “Federico II”. Authors want to thank E. Martínez Pérez her technical assistance for fruit characterization.


  1. Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 10(12):104CrossRefGoogle Scholar
  2. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838PubMedCrossRefGoogle Scholar
  3. Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15CrossRefGoogle Scholar
  4. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  5. Esteras C, Nuez F, Picó B (2011) Genetic diversity studies in Cucurbits using molecular tools. In: Wang Y, Behera TK (eds) Cucurbits: genetics, genomics and breeding in crop plants. Science Publishers Inc., Enfield, p 25Google Scholar
  6. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  7. Ezura H, Fukino N (2009) Research tools for functional genomics in melon (Cucumis melo L.): current status and prospects. Plant Biotechnol 26:359–368CrossRefGoogle Scholar
  8. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using mulitlocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  9. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using mulitlocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  10. Fergany M, Balvir Kaur, Monforte AJ, Pitrat M, Rys C, Lecoq H, Dhillon NPS, Dhaliwal SS (2011) Variation in melon (Cucumis melo) landraces adapted to the humid tropics of southern India. Genet Resour Crop Evol 58:225–243CrossRefGoogle Scholar
  11. Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, Pico B, Nuez F, Arus P, Garcia-Mas J, Monforte AJ (2008) Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 118:139–150PubMedCrossRefGoogle Scholar
  12. Ferriol M, Pico B (2008) Pumpkin and Winter Squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables I. Springer, New York, pp 317–349Google Scholar
  13. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  14. Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Res 8:198–203CrossRefGoogle Scholar
  15. Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48PubMedCrossRefGoogle Scholar
  16. Gonzalez VM, Rodríguez-Moreno L, Centeno E, Benjak A, Garcia-Mas J, Puigdomènech P, Aranda MA (2010) Genome-wide BAC-end sequencing of Cucumis melo using two BAC libraries. BMC Genomics 11:618PubMedCrossRefGoogle Scholar
  17. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281Google Scholar
  18. Hubisz MJ, Falush D, Stephens M, Pritcard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCrossRefGoogle Scholar
  19. Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Kristkova E (2007) Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 3. CRC Press, Boca Raton, pp 271–376Google Scholar
  20. Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, Shi Q, Jia Z, Zhang W, Chen H, Si L, Zhu L, Cai R (2009) Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381–1385PubMedCrossRefGoogle Scholar
  21. Lira R, Montes S (1994) Cucurbits (Cucurbita spp.). In: Hernandez JE, Leon J (eds) Neglected crops, 1492 from a different perspective. F.A.O, Rome, pp 63–77Google Scholar
  22. Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129PubMedCrossRefGoogle Scholar
  23. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  24. Metzker ML (2010) Applications of next-generation sequencing. Sequencing technologies the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  25. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  26. Nesom GL (2011) Toward consistency of taxonomic rank in wild/domesticated Cucurbitaceae. Phytoneuron 13:1–33Google Scholar
  27. Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138Google Scholar
  28. Paris HS (2000) History of the cultivar-groups of Cucurbita pepo. In: Janick J (ed) Hort revs, vol 25. Wiley, New York, pp 71–170Google Scholar
  29. Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables I. Springer, New York, pp 351–379Google Scholar
  30. Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortScience 40:1620–1630Google Scholar
  31. Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N (2003) Assessment of genetic relationships in 4 Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet 106:971–978PubMedGoogle Scholar
  32. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  33. Rohlf JF (1998) NTSYS: numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, SetauketGoogle Scholar
  34. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540PubMedCrossRefGoogle Scholar
  35. Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276:932–934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Gelsomina Formisano
    • 1
  • Cristina Roig
    • 2
  • Cristina Esteras
    • 2
  • Maria Raffaella Ercolano
    • 1
  • Fernando Nuez
    • 2
  • Antonio Jose Monforte
    • 3
  • Maria Belen Picó
    • 2
    Email author
  1. 1.Department of Soil, Plant, Environmental and Animal Production SciencesUniversity of Naples ‘Federico II’PorticiItaly
  2. 2.Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Ciudad Politécnica de la Innovación, CPI, Edificio 8E, Escalera JUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI)ValenciaSpain

Personalised recommendations