Intra-varietal genetic diversity of the grapevine (Vitis vinifera L.) cultivar ‘Nero d’Avola’ as revealed by microsatellite markers

  • Francesco CarimiEmail author
  • Francesco Mercati
  • Roberto De Michele
  • Maria Carola Fiore
  • Paolo Riccardi
  • Francesco Sunseri
Short Communication


The Sicilian grape cultivar ‘Nero d’Avola’ is among the oldest and most cultivated in the island, taking part in the production of several red wines exported worldwide, including DOC wines (Etna Rosso and Cerasuolo di Vittoria). Due to the ancient origin and repeated clonally propagation of the cultivar, phenotypic variability has been observed. Clone identification in this important cultivar has so far relied on phenotypic and chemical traits analyses, often affected by environmental conditions. Genetic markers, such as microsatellites, are particularly useful for cultivar identification, parentage testing, pedigree reconstruction and population structure studies. In the present paper, microsatellites were used to analyze the intra-varietal genetic diversity among 118 plants of ‘Nero d’Avola’, collected in 30 vineyards displaced in different areas of Sicily. Out of 22 microsatellites, 11 showed polymorphism among samples and 15 different phylogenetic groups were identified. Results show that ‘Nero d’Avola’ actually comprises different genetic profiles, although most of clones share a common origin.


Clonal identification Simple sequence repeat Synonymies and homonyms Vitis vinifera L. 



This research was partly supported by a grant from “Assessorato Agricoltura e Foreste, Regione Sicilia” in the frame of the project “Caratterizzazione tecnologica e genetica di microrganismi autoctoni ed interazione con i migliori cloni dei vitigni ‘Nero d’Avola’ ed Inzolia per migliorare alcune produzioni vitivinicole tipiche della Regione Sicilia” (Project Leader Prof. Patrizia Romano—Università degli Studi della Basilicata) and by the grant from the Italian Ministry of the Research in the frame of the project ‘Tracciabilità della filiera vitivinicola’ (OR 2.1.2—CISIA DGLS 191/2009).


  1. Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455PubMedGoogle Scholar
  2. Carimi F, Mercati F, Abbate L, Sunseri F (2010) Microsatellite analyses for evaluation of genetic diversity among Sicilian grapevine cultivars. Genet Resour Crop Evol 57:703–719CrossRefGoogle Scholar
  3. Costantini L (1989) Plant exploitation at Grotta dell’Uzzo, Sicily: new evidence for the transition from Mesolithic to Neolithic subsistence in southern Europe. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of the plant exploitation. Unwin & Hyman, London, pp 197–206Google Scholar
  4. Costantini L, Monaco A, Vouillamoz JF, Forlani M, Grando MS (2005) Genetic relationships among local Vitis vinifera cultivars from Campania. Vitis 44:25–34Google Scholar
  5. Cupani F (1696) Hortus Catholicus seù illustrissimi, and excellentissimi principis Catholicae. Ed Benzi, NeapoliGoogle Scholar
  6. Di Rosa C, Gringeri F (1966) Nero d’Avola, il vitigno dei più prestigiosi vini di Sicilia. Associazione Turistica Pro-Loco di Avola, AAPIT, SiracusaGoogle Scholar
  7. Doyle JJ, Doyle LJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  8. Geremia G (1839) Vertunno Etneo ovvero Stafulegrafia, storia delle varietà delle uve che trovasi nel d’intorno dell’Etna. Atti dell’Accademia Gioenia, Catania 14:3–55 and 57–68Google Scholar
  9. González-Techera A, Jubany S, Ponce de Leon I, Boido E, Dellacasa E, Carrau FM (2004) Molecular diversity within clones of cv. Tannat (Vitis vinifera L.). Vitis 43:179–185Google Scholar
  10. Gryta H, Carriconde F, Charcosset JY, Jargeat P, Gardes M (2005) Population dynamics of the ectomycorrhizal fungal species Tricholoma populinum and Tricholoma scalpturatum associated with black poplar under differing environmental conditions. Environ Microbiol 8:773–786CrossRefGoogle Scholar
  11. Moncada X, Hinrichsen P (2007) Limited genetic diversity among clones of red wine cultivar “Carmenère” as revealed by microsatellite an AFLP markers. Vitis 46:174–181Google Scholar
  12. Moncada X, Munoz L, Castro M, Hinrichsen P, Merdinoglu D (2005) Clonal polymorphism in the red wine cultivars ‘Carmenere’ and ‘Cabernet Sauvignon’. Acta Hortic 689:513–519Google Scholar
  13. Moncada X, Pelsy F, Merdinoglu D, Hinrichsen P (2006) Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers. Genome 49:1459–1472PubMedCrossRefGoogle Scholar
  14. Paetkau D, Calvert W, Stirling I, Stroberk C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354PubMedCrossRefGoogle Scholar
  15. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  16. Regner F, Wiedeck E, Stadlbauer A (2000) Differentiation and identification of white Riesling clones by genetic markers. Vitis 39:103–107Google Scholar
  17. Regner F, Hack R, Santiago JL (2006) Highly variable Vitis microsatellite loci for the identification of Pinot Noir clones. Vitis 45:85–91Google Scholar
  18. Rohlf FJ (1998) Numerical taxonomy and multivariate analysis system ver. 2.02. Applied Biostatics Inc., New YorkGoogle Scholar
  19. Sefc KM, Lopes MS, Lefort F, Botta R, Roubelakis-Angelakis KA, Ibanez J, Pejic I, Wagner HW, Glossl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100:498–505CrossRefGoogle Scholar
  20. Siegfried LK (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245CrossRefGoogle Scholar
  21. Tessier C, David J, Thip P, Boursiquot JM, Charrier A (1999) Optimization of the choice of molecular markers for varietal identification in Vitis vinifera L. Theor Appl Genet 98:171–177CrossRefGoogle Scholar
  22. Wagner HW, Sefc KM (1999) Identity 1.0. Centre for Applied Genetics, University of Agricultural SciencesGoogle Scholar
  23. Weber JL (1990) Informativeness of human (dC-dA)n-(dGdT)n polymorphisms. Genomics 7:524–530PubMedCrossRefGoogle Scholar
  24. Yeh FC, Yang RC, Boyle T (1999) Popgene, version 1.31. Centre for International Forestry Research and University of Alberta, EdmontonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Francesco Carimi
    • 1
    Email author
  • Francesco Mercati
    • 2
    • 3
  • Roberto De Michele
    • 1
  • Maria Carola Fiore
    • 1
  • Paolo Riccardi
    • 2
    • 4
  • Francesco Sunseri
    • 2
  1. 1.Istituto di Genetica Vegetale, Consiglio Nazionale delle RicerchePalermoItaly
  2. 2.Dipartimento di Biotecnologie per il Monitoraggio Agro-alimentare ed AmbientaleUniversità Mediterranea degli Studi di Reggio CalabriaReggio CalabriaItaly
  3. 3.EnBioTech s.r.l.PalermoItaly
  4. 4.CRA-ORL, Unità di Ricerca per l’OrticolturaMontanaso Lombardo (LO)Italy

Personalised recommendations