Skip to main content
Log in

Karyotype characterization reveals an up and down of 45S and 5S rDNA sites in Crotalaria (Leguminosae-Papilionoideae) species of the section Hedriocarpae subsection Macrostachyae

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The genus Crotalaria is one of the largest within the family Leguminosae-Papilionoideae, with more than 600 species. However, few karyotypes have been described. In the present paper, five species belonging to the section Hedriocarpae were studied (subsection Machrostachyae), in order to better understand chromosomal evolution in Crotalaria. The results reveals that all species presented 2n = 2x = 16 with symmetrical karyotypes, and slight differences in the chromosome morphology. A secondary constriction was identified at short arm of the pair 1. The 45S rDNA was mapped in the secondary constriction and adjacent heterochromatin (NOR-heterochromatin) and a minor site was identified in C. ochroleuca. The 5S rDNA was mapped linked to 45S rDNA at chromosome 1 short arm in all species. Additional sites for 5S rDNA were identified in C. pallida, C. striata and C. mucronata. Heterochromatin blocks around the centromeres are not CMA+ neither DAPI+. The karyotypes of the subsection Macrostachyae are characterized by an inversion at chromosome pair one in relation to previous specialized floral species analyzed. Additional sites of 45S and 5S rDNA were assumed to be a result of transposition events by different ways. The results suggest heterochromatin differentiation and the position of ribosomal genes indicates chromosomal rearrangements during evolution. Karyotype characteristics corroborate the morphological infrageneric classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed B, Al-Howiriny TA, Mossa JS (2006) Crotalic and emarginellic acids: two triterpenes from Crotalaria emarginella and anti-inflammatory and anti-hepatotoxic activity of crotalic acid. Phytochemistry 67:956–964

    Article  PubMed  CAS  Google Scholar 

  • Ali HB, Meister A, Schubert I (2000) DNA content, rDNA loci, and DAPI bands reflect the phylogenetic distance between Lathyrus species. Genome 43:1027–1032

    PubMed  CAS  Google Scholar 

  • Almada RD, Daviña JR, Seijo JG (2006) Karyotype analysis and chromosome evolution in southernmost South American species of Crotalaria (Leguminosae). Bot J Linn Soc 150:329–341

    Article  Google Scholar 

  • Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A (2006) Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 14:307–317

    Article  PubMed  CAS  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  PubMed  CAS  Google Scholar 

  • Bisby FA, Polhill RM (1973) The role of taximetrics in angiosperm taxonomy. II. Parallel taximetrics and orthodox studies in Crotalaria L. New Phytol 72:727–742

    Article  Google Scholar 

  • Boulter D, Derbyshire E, Frahm-Leliveld JA, Polhill RM (1970) Observations on the cytology and seed-proteins of various African species of Crotalaria L. (Leguminosae). New Phytol 69:117–131

    Article  Google Scholar 

  • Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664

    Article  Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96

    Article  PubMed  CAS  Google Scholar 

  • Cuco SM, Mondin M, Vieira MLC, Aguiar-Perecin MLR (2003) Técnicas para obtenção de preparações citológicas com alta frequência de metáfases mitóticas em plantas: Passiflora (Passifloraceae) e Crotalaria (Leguminosae). Acta Bot Bras 17:363–370

    Article  Google Scholar 

  • Cuco SM, Vieira MLC, Mondin M, Aguiar-Perecin MLR (2005) Comparative karyotype analysis of three Passiflora L. species and cytogenetic characterization of somatic hybrids. Caryologia 58:220–228

    Google Scholar 

  • Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosome Res 14:845–857

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Dinardo-Miranda LL, Gil MA (2005) Effect of crop rotation with Crotalaria juncea on sugar cane yield, treated or not with nematicides at planting. Nematol Bras 29:63–66 [Portuguese]

    Google Scholar 

  • Flores AS (2004) Taxonomia, números cromossômicos e química de espécies de Crotalaria L. (Leguminosae-Papilolionoideae) no Brasil. PhD. thesis, Universidade Estadual de Campinas, Brazil

  • Flores AS, Corrêa AM, Forni-Martins ER, Tozzi AMGA (2006) Chromosome numbers in Brazilian species of Crotalaria L. (Leguminosae-Papilioideae) and their taxonomic significance. Bot J Linn Soc 151:271–277

    Article  Google Scholar 

  • Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:659–664

    Article  Google Scholar 

  • Fregonezi JN, Vilas-Boas LA, Fungaro MHP, Gaeta ML, Vanzela ALL (2007) Distribution of a Ty3/gypsy-like retroelement on the A and B-chromosomes of Cestrum strigilatum Ruiz and Pav. and Cestrum intermedium Sendtn. (Solanaceae). Genet Mol Biol 30:599–604

    Article  CAS  Google Scholar 

  • Germani G, Plenchette C (2004) Potential of Crotalaria species as green manure crops for the management of pathogenic nematodes and beneficial mycorrhizal fungi. Plant Soil 266:333–342

    Article  CAS  Google Scholar 

  • Gupta PK (1976) Nuclear DNA, nuclear area and nuclear dry mass in thirteen species of Crotalaria (Angiospermae, Leguminosae). Chromosoma 54:155–164

    Article  CAS  Google Scholar 

  • Gupta R, Gupta PK (1978) Karyotype studies in the genus Crotalaria Linn. Cytologia 43:357–369

    Article  Google Scholar 

  • Hanelt P, Institute of Plant Genetics and Crop Plant Research (eds) (2001) Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops 1–6, 3716 p

  • Heslop-Harrison JS, Schwarzacher T (2011) Organisation of the plant genome in chromosomes. Plant J doi:10.1111/j.1365-313X.2011.04544.x

  • Kotseruba V, Gernand D, Meister A, Houben A (2003) Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8). Genome 46:156–163

    Article  PubMed  CAS  Google Scholar 

  • Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A (2010) The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 56:146–155

    Article  PubMed  Google Scholar 

  • Kuhn GCS, Sene FM, Moreira-Filho O, Schwarzacher T, Heslop-Harrison JS (2008) Sequence analysis, chromosomal distribution and long-range organization show that rapid turnover of new and old pBuM satellite DNA repeats leads to different patterns of variation in seven species of the Drosophila buzzatii cluster. Chromosome Res 16:307–324

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018

    Article  CAS  Google Scholar 

  • Lim KY, Matyásek R, Lichtenstein CP, Leith AR (2000) Molecular cytogenetics analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258

    Article  PubMed  CAS  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26:85–98

    Article  PubMed  CAS  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Molecular cytogenetics of the genus Arabidopsis: In situ localization of rDNA sites, chromosome number and diversity in centromeric heterochromatin. Ann Bot 71:479–484

    Article  CAS  Google Scholar 

  • Mazzella C, Rodrígues M, Vaio M, Gaiero P, López-Carro B, Santiñaque FF, Folle GA, Guerra M (2010) Karyological features of Achyrocline (Asteraceae, Gnaphalieae): stable karyotypes, low DNA content variation and linkage of rRNA genes. Cytogenet Genome Res 128:169–176

    Article  PubMed  CAS  Google Scholar 

  • McMullen MD, Hunter B, Phillips RL, Rubenstein I (1986) The structure of the maize ribosomal DNA spacer region. Nucleic Acids Res 14:4953–4968

    Article  PubMed  CAS  Google Scholar 

  • Mondin M (2003) Estudo da evolução cariotípica do gênero Crotalaria L. (Leguminosae-Papilionoideae) com o emprego de técnicas de bandamento cromossômico e hibridação in situ fluorescente (FISH). PhD. thesis, ESALQ, Universidade de São Paulo, Brazil

  • Mondin M, Aguiar-Perecin MLR, Morales AG, Andrade LM, Molina SCM (2007a) Citogenética do gênero Crotalaria (Leguminosae-Papilionoideae): da clássica a molecular. Memórias do Simposio Latinoamericano de Citogenética y Evolución, pp 189–195

  • Mondin M, Santos-Serejo JA, Aguiar-Perecin MLR (2007b) Karyotype characterization of Crotalaria juncea L. (Leguminosae-Papilionoideae) by chromosome banding and in situ hybridization of rDNA 45s and 5s. Genet Mol Biol 30:65–72

    Article  CAS  Google Scholar 

  • Morris JB, Kays SE (2005) Total dietary fiber variability in a cross section of Crotalaria juncea genetic resources. Crop Sci 45:1826–1829

    Article  Google Scholar 

  • Oliveira ALPC, Aguiar-Perecin MLR (1999) Karyotype evolution in the genus Crotalaria L. Cytologia 64:164–174

    Article  Google Scholar 

  • Palomino G, Vázquez R (1991) Cytogenetic Studies in Mexican Populations of Species of Crotalaria L. (Leguminosae-Papilionideae). Cytologia 56:343–351

    Article  Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Polhill RM (1982) Crotalaria in Africa and Madagascar. A.A. Balkema, Rotterdam

    Google Scholar 

  • Raina SN, Verma RC (1979) Cytogenetics of Crotalaria. I. Mitotic complements in twenty species of Crotalaria L. Cytologia 44:365–375

    Article  Google Scholar 

  • Raina SN, Mukai Y, Kawaguchi K, Goel S, Jain A (2001) Physical mapping of 18S–5.8S–26S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species complexes. Theor Appl Genet 103:839–845

    Article  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004a) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res 12:153–161

    Article  PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004b) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101:14818–14823

    Article  PubMed  CAS  Google Scholar 

  • Ruas CF, Vanzela ALL, Santos MO, Fregonezi JN, Ruas PM, Matzenbacher NI, Aguiar-Perecin MLR (2005) Chromosomal organization and phylogenetic relationships in Hypochaeris species (Asteraceae) from Brazil. Genet Mol Biol 28:129–139

    Article  CAS  Google Scholar 

  • Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115

    Article  PubMed  CAS  Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Bios, Oxford

    Google Scholar 

  • Seong HJ, Koh SB, Kim TS, Park HW, Park CG, Kim JS, Kang MH (2008) Functional food for preventing and treating large intestinal cancer containing Crotalaria sessiflora extract. Derwent World Patent Index: Primary Accession Number: 2008-A43273, Patent Number: KR2007070316-A

  • Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol General Genet 263:586–591

    Article  CAS  Google Scholar 

  • Smarda P, Bureš P, Horová L, Foggi B, Rossi G (2008) Genome size and GC content evolution of Festuca: ancestral expansion and subsequent reduction. Ann Bot 101:421–433

    Article  PubMed  CAS  Google Scholar 

  • Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9

    Article  CAS  Google Scholar 

  • Taketa S, Ando H, Takeda K, Harrison GE, Heslop-Harrison JS (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor Appl Genet 100:169–176

    Article  CAS  Google Scholar 

  • Tapia-Pastrana F, Gallegos-Pacheco E, Teodoro-Pardo C, Mercado-Ruaro P (2005) New cytogenetic information of two mexican populations of Crotalaria incana L. (Leguminosae-Papilioideae). Cytologia 70:207–212

    Article  Google Scholar 

  • Verma RC, Raina SN (1983) Cytogenetics of Crotalaria. VIII. Male meiosis in 26 species. Cytologia 48:719–733

    Article  Google Scholar 

  • Verma RC, Kesavacharyulu K, Raina SN (1984) Cytogenetics of Crotalaria. IX. Mitotic complements in 19 species. Cytologia 49:157–169

    Article  Google Scholar 

  • Windler D (1974) Chromosome number for native North American unifoliate species of Crotalaria (Leguminosae). Brittonia 26:172–176

    Article  Google Scholar 

  • Winterfeld G, Röser M (2007) Disposition of ribosomal DNAs in the chromosomes of perennial oats (Poaceae: Aveneae). Bot J Linn Soc 155:193–210

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to Coordenação de Aperfeiçoamento de Pessoal de Nível Supeior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for supporting AGM. MM was a PRODOC/CAPES fellowship. Research was also supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP Proc. 98/01170-5). We are thankful to Gustavo C.S. Kuhn for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mondin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales, A.G., Aguiar-Perecin, M.L.R. & Mondin, M. Karyotype characterization reveals an up and down of 45S and 5S rDNA sites in Crotalaria (Leguminosae-Papilionoideae) species of the section Hedriocarpae subsection Macrostachyae. Genet Resour Crop Evol 59, 277–288 (2012). https://doi.org/10.1007/s10722-011-9683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-011-9683-8

Keywords

Navigation