Genetic Resources and Crop Evolution

, Volume 59, Issue 2, pp 253–260 | Cite as

EST-SSR cross-amplification and genetic similarity in Onobrychis genus

  • Samir Demdoum
  • Fernando Muñoz
  • Ignacio Delgado
  • José Valderrábano
  • Ana Wünsch
Research Article


EST-SSR from Medicago truncatula Gaertn. and Glycine max (L.) Merr. were tested for transferability in various species of Onobrychis (O. pyrenaica Sennen, O. argentea Boiss. and O. viciifolia Scop.). Repeatable amplification was obtained for 81% of the microsatellites and 52% were polymorphic. Six selected SSRs from M. truncatula were used to fingerprint and estimate the genetic similarity of a set of 23 accessions of O. viciifolia. PCA analysis discriminated among the different Onobrychis species and the sainfoin accessions were clustered in a single major group. This grouping is discussed in terms of the history of cultivation of sainfoin in Spain. The selected SSRs will allow fingerprinting and genetic studies in Onobrychis species, solving the lack of available SSR markers in this species.


Cultivar identification Fingerprinting Microsatellites Molecular markers Onobrychis Sainfoin SSR transferability 


  1. Aldrich DTA (1984) Lucerne, red clover and sainfoin—herbage production. In: Thomson DJ (ed) Forage legumes, occasional symposium 16, BGS, Hurley, pp 126–131Google Scholar
  2. Badoux S (1965) Étude des caractères morphologiques physiologiques et agronomiques de populations d’esparcette (Onobrychis spp.). Rech Agron Suisse 4:111–190Google Scholar
  3. Botstein D, White RL, Skolnic M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  4. Dangi RS, Lagu MD, Choudhary L, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:13Google Scholar
  5. Delgado I, Salvia J, Buil I, Andrés C (2008) The agronomic variability of a collection of sainfoin accessions. Span J Agric Res 6:401–407Google Scholar
  6. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  7. Eujayl I, Sledge MK, Wang L, Chekhoskiy K, Zwonitzer JC, Mian MAR (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422PubMedCrossRefGoogle Scholar
  8. Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammadi SA, Ghareyazie B (2004) Population genetic structure based on SSR markers in alfalfa (Medicago sativa L.) from various regions contiguous to the centres of origin of the species. J Genet 86:59–63CrossRefGoogle Scholar
  9. Gaitán-Solís E, Duque MC, Edwards KJ, Tohme J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-Species amplification in Phaseolus ssp. Crop Sci 42:2128–2136CrossRefGoogle Scholar
  10. Gasparin A (1846) Cours d’agriculture. Librairie Agricole de la Maison Rustique IV, Paris, p 780Google Scholar
  11. Gill M, Smith P, Wilkinson JM (2009) Mitigating climate change: the role of domestic livestock. Animal 4:323–333Google Scholar
  12. Gutierrez MV, Patto MCV, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217PubMedCrossRefGoogle Scholar
  13. Hayot-Carbonero C, Mueller-Harvey I, Brown TA, Smith L (2010) Sainfoin (Onobrychis viciifolia): a beneficial forage legume. Plant Genet Res (In press)Google Scholar
  14. Hormaza JI (1999) Early selection in cherry combining RAPDs with embryo culture. Sci Hortic 79:121–126CrossRefGoogle Scholar
  15. Hoste H, Jackson F, Athanasiadou S, Thamsborg S, Hoskin SO (2006) The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol 22:253–261PubMedCrossRefGoogle Scholar
  16. Koivisto JM, Lane GPF (2001) Sainfoin, worth another look. FAO,
  17. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369PubMedCrossRefGoogle Scholar
  18. Min BR, Barry TN, Attwood GT, McNabb WC (2003) The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 106:3–19CrossRefGoogle Scholar
  19. Mueller-Harvey I (2006) Unravelling the conundrum of tannins in animal nutrition and health. J Sci Food Agric 86:2010–2037CrossRefGoogle Scholar
  20. Muller JT (1893) Diccionario universal de agricultura. Elias & Co, Barcelona, p 786Google Scholar
  21. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  22. Peakall R, Smouse P (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  23. Peakall R, Gilmore S, Keys W, Morgante M, Rafalski A (1998) Cross-species amplification of soybean (Glycine max) Simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol Biol Evol 15:1275–1287PubMedGoogle Scholar
  24. Puchala R, Min BR, Goetsch AL, Sahlu T (2005) The effect of a condensed tannin-containing forage on methane emission by goats. J Anim Sci 83:182–186PubMedGoogle Scholar
  25. Pujol M (ed) (1974) El fomento de la producción forrajeropratense en la provincia de Huesca. Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain, p 182Google Scholar
  26. Ramirez-Restrepo CA, Barry TN (2005) Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci Technol 120:179–201CrossRefGoogle Scholar
  27. Rochon JJ, Doyle CJ, Greef JM, Hopkins A, Molle G, Sitzia M, Scholefield D, Smith CJ (2004) Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects. Grass Forage Sci 59:197–214CrossRefGoogle Scholar
  28. Rohlf FJ (2002) NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.2. Exeter Software, New YorkGoogle Scholar
  29. Sardaro S, Molinari L, Albertini E, Rosellini D, Negri V, Falcinelli M (2003) Molecular distinctiveness of wild populations of Poa pratensis, Lolium perenne and Onobrychis viciifolia. Sementi elette 49:47–49Google Scholar
  30. Scott KD, Eggler P, Seaton G, Rosetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  31. Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. & Phaseolus coccineus L. landraces in central Italy. Plant Breed 124:464–472CrossRefGoogle Scholar
  32. Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 94:264–272CrossRefGoogle Scholar
  33. White G, Powell W (1997) Cross-species amplification of SSR loci in the Meliaceae family. Mol Ecol 6:1195–1197CrossRefGoogle Scholar
  34. Wünsch A, Hormaza JI (2002) Molecular characterization of sweet cherry (Prunus avium L.) genotypes using peach (Prunus persica (L.) Batsch) SSR sequences. Heredity 89:56–63PubMedCrossRefGoogle Scholar
  35. Zhang Y, Sledge MK, Bouton JH (2007) Genome mapping of white clover (Trifolium repens L.) and comparative analysis within the Trifolieae using cross-species SSR markers. Theor Appl Genet 114:1367–1378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Samir Demdoum
    • 1
  • Fernando Muñoz
    • 1
  • Ignacio Delgado
    • 1
  • José Valderrábano
    • 1
  • Ana Wünsch
    • 1
  1. 1.Centro de Investigación y Tecnología Agroalimentaria de AragónZaragozaSpain

Personalised recommendations