Genetic Resources and Crop Evolution

, Volume 58, Issue 8, pp 1225–1235 | Cite as

Identification and evaluation of Forsythia germplasm using molecular markers

  • Jeung Keun Suh
  • Wilbert Hetterscheid
  • Ae Kyung Lee
  • Jeong Hong
  • Mark S. Roh
Research Article


This study identifies Forsythia germplasm and evaluated the genetic relationships of F. ×intermedia hybrids, cultivars and their putative parental species. Leaf samples of F. ×intermedia cultivars and species, such as F. koreana and F. suspensa, were collected in the Netherlands, Korea, and USA. Total genomic DNA was extracted and evaluated by randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analyses. Dendrograms were constructed by using the neighbor-joining (NJ) clustering algorithm applying the interior branch (IB) test or analyzed by STRUCTURE. In the dendrogram generated by RAPD markers, two major clusters were observed. One cluster (CL-I) contained most of the F. ×intermedia cultivars, F. suspensa, and F. koreana. The other cluster (CL-II) included F. europaea, F. ovata, F. densiflora, F. mandshurica, F. japonica, F. viridissima, and cultivars derived from F. ovata. In the AFLP dendrogram, the placement of F. ×intermedia cultivars with F. suspensa was similar, forming cluster CL-A I. The RAPD and AFLP results clearly separated most F. ×intermedia cultivars from F. ovata derived cultivars. The full range of genetic diversity of F. suspensa and F. viridissima should be investigated to verify whether these two species are truly parental taxa for F. ×intermedia. Placement of F. viridissima, F. ovata, and F. japonica in different sub-clusters requires further investigation regarding genetic diversity in the species, and their close relationship with F. koreana, F. mandshurica, and F. saxatalis.


Forsythia ×intermedia cultivars Genetic diversity Hybrid origin Random amplification of polymorphic DNA (RAPD) STRUCTURE 


  1. Benham J, Jeung J-G, Jasienium M, Vladimir K, Blake T (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J Agric Genom 4:399. Accessed on 17 Nov 2010Google Scholar
  2. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  3. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  4. Gu H, Gai L, Zhou T-S, Jiang K-J, Chen J-K, and Khui B-K (2002) A preliminary study on the molecular and chemical characteristics of authenticity (Daodixing) of a traditional Chinese medicinal plant—Forsythia suspensa Vahl. J Fudan Univ (Natural Science) 41:664–668. Accessed on 17 Nov 2010Google Scholar
  5. Hawkins JA, Harris SA (1998) RAPD characterization of two neotropical hybrid legumes. Plant Syst Evol 213:43–55CrossRefGoogle Scholar
  6. International Code of Nomenclature for Cultivated Plants (2004) Brickell CD, Baum BR, Hetterscheid WLA, Leslie AC, McNeill J, Trehane P, Vrugtman F, and Wiersema JH (eds) New edition of the International Code of Nomenclature for Cultivated Plants. Acta Hort 647:v–xxi, 1–123Google Scholar
  7. INRA Centre d’Angers. Forsythia especes et varieties. ( Accessed on 30 Nov 2010)
  8. Joung YH, Roh MS (2004) Paternity determination of Ornithogalum seedlings using DNA markers. J Hort Sci Biotech 79:316–321Google Scholar
  9. Joung YH, Roh MS (2006) Mapping characterization of Pinus sylvestris var. sylvestriformis based on chloroplast DNA microsatellite markers. For Genet 12:89–98Google Scholar
  10. Kim K-J (1999) Molecular phylogeny of Forsythia (Oleaceae) based on chloroplast DNA variation. Plant Syst Evol 218:113–123CrossRefGoogle Scholar
  11. Kim K-J, Chang JS (2007) 171. Oleaceae Hoffmans. & Link. In: Park J-W (ed) The genera of vascular plants of Korea. Academy Publishing Co, Seoul, Korea, pp 845–860Google Scholar
  12. Kim S-Y, Kim Y-D, Kim J-S, Yang B-H, Kim S-H, Lee B-C (2009) Genetic diversity of Forsythia ovata Nakai (Oleaceae) based on inter-simple sequence repeats (ISSR). Korean J Plant Taxon 39:48–54Google Scholar
  13. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  14. La EC (1999) 2. Oleaceae Lind. Forsythia. In: Lim RJ, Ko HS, La EC, Hong KS, Park JM (eds) Flora Coreana, vol 6. The Science and Technology Publishing House, Pyongyang, Korea, pp 27–33Google Scholar
  15. Lee S (1984) A systematic study of Korean Forsythia species. Korean J Plant Taxon 14:87–107Google Scholar
  16. Lee NS, Yeau SH, Park JO, Roh MS (2006) Molecular evident for hybridization of Ilex ×wandoensis (Aquifoliaceae) by RAPD analysis. J Plant Biol 49:491–497CrossRefGoogle Scholar
  17. Nakai T (1926) Miscellaneous notes on Japanese and Korean plants. Bot Mag (Tokyo) 40:145–149CrossRefGoogle Scholar
  18. Nei M (1996) Phylogenetic analysis in molecular evolutionary genetics. Annu Rev Genet 30:371–403PubMedCrossRefGoogle Scholar
  19. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  20. Rehder A (1940) Manual of cultivated trees and shrubs, 2nd edn. The Blackburn Press, Caldwell, NJ, 996 pGoogle Scholar
  21. Roh MS, Lee AK, Choi I-Y, Kim J-Y, Joung YH, Lee SH, Suh JK (2007) Characterization of the Corylopsis coreana using molecular markers. Hort Environ Biotechnol 48:176–187Google Scholar
  22. Roh MS, McNamara WA, Piction D, Yin K, Wang Q (2008) Assessment of genetic variation in Acer pentaphyllum based on amplified fragment length polymorphisms. J Hort Sci Biotechnol 83:725–731Google Scholar
  23. Rosati C, Cadic A, Duron M, Simoneau P (2007) III. 6. Forsythia. In: Pau EC, Davey MR (eds) Biotechnology in Agriculture and Forestry, vol. 61, Transgenic crops VI. Springer, Berlin Heidelberg, pp 299–318Google Scholar
  24. Saito K, Fukuda T, Yokoyama J, Maki M (2006) Morphological and molecular (RAPD) analyses confirm the hybrid origin of the diploid grass Calamagrostis longiseta var. longe-aristata (Gramineae). Folia Geobot 42:63–76CrossRefGoogle Scholar
  25. Schmitt LV (1937) The Forsythias. Arnold Arboretum, Harvard University. Bull Popular Information Ser 4, 5(1):1–8Google Scholar
  26. Shu LQ (1996) 3. Forsythia Vahl. Enum. Pl. 1:39. 1804. Flora of China 15:279–280Google Scholar
  27. Silva EP, Russo CAM (2000) Techniques and statistical data analysis in molecular population genetics. Hydrobiologia 420:119–135CrossRefGoogle Scholar
  28. Sitnikova T, Rzhetsk YA, Nei M (1995) Interior-branch and bootstrap tests of phylogenetic trees. Mol Biol Evol 12:319–333PubMedGoogle Scholar
  29. USDA ARS National Genetic Resources Program (2009) Germplasm Resources Information Network—(GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, MD. Accessed on 17 Nov 2010
  30. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefPubMedCentralGoogle Scholar
  31. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefPubMedCentralGoogle Scholar
  32. Wolfe AD, Xiang Q-Y, Kephart SR (1998) Assessing hybridization in natural populations of Penstemon (Scrophulariaceae) using hypervariable intersimple sequence repeat (ISSR) bands. Mol Ecol 7:1107–1125PubMedCrossRefGoogle Scholar
  33. Wyman D (1950) The forsythias. Arnoldia 19(2):9–16Google Scholar
  34. Wyman D (1961) Registration lists of cultivar names of forsythias. Arnoldia 21(6):39–42Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Jeung Keun Suh
    • 1
  • Wilbert Hetterscheid
    • 2
  • Ae Kyung Lee
    • 1
  • Jeong Hong
    • 3
  • Mark S. Roh
    • 4
  1. 1.School of Bio-Resources Science, Department of Environmental HorticultureDankook UniversityChungnamKorea
  2. 2.Von Gimborn ArboretumDoornThe Netherlands
  3. 3.Department of Horticultural Science, College of Food, Agricultural and Natural ResourceUniversity of MinnesotaSt. PaulUSA
  4. 4.US Department of Agriculture, Agricultural Research Service, US National ArboretumFloral and Nursery Plants Research UnitBeltsvilleUSA

Personalised recommendations