Genetic Resources and Crop Evolution

, Volume 58, Issue 8, pp 1187–1198 | Cite as

Genetic diversity of diploid Japanese strawberry species based on microsatellite markers

  • Wambui Njuguna
  • Kim E. Hummer
  • Christopher M. Richards
  • Thomas M. Davis
  • Nahla V. Bassil
Research Article

Abstract

The United States Department of Agriculture (USDA)—Agricultural Research Service (ARS)—National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, is a genebank that preserves strawberry genetic resources. Representatives of two Japanese diploid species, Fragaria iinumae Makino and F. nipponica Makino were collected for conservation by the NCGR during an expedition to Hokkaido, Japan. Fragaria iinumae may be a genome contributor to the cultivated octoploid strawberries. The objective of this study was to evaluate the genetic diversity of these two species by using simple sequence repeat (SSR) markers. Twenty of 82 Fragaria-derived SSRs, polymorphic among and within the two species, were selected for genetic analysis of 137 accessions. Genetic diversity, based on the proportion of shared alleles between the two species, in F. nipponica (0.4542) and F. iinumae (0.1808) was significantly different. Three wild interspecific hybrids were identified from intermediate memberships in the two diploid species groups revealed by using the clustering program, Structure. Principal coordinate analysis followed by non-parametric modal clustering (PCO-MC) grouped accessions into two clusters representing the two diploid species. Further clustering within the species groups generated with the program, STRUCTURAMATM, resulted in seven subclusters in F. iinumae and three in F. nipponica, which may represent breeding populations appropriate for clonal conservation. Long-term preservation of the species populations and the limited number of hybrids on the island is discussed relative to their geographical distribution and the geological history of Hokkaido Island.

Keywords

Fragaria iinumae Fragaria nipponica Interspecific hybridization Population structure SSR 

References

  1. Abbott RJ, James JK, Milne RI, Gillies ACM (2003) Plant introductions, hybridization and gene flow. Philos Trans R Soc B 358:1123–1132CrossRefGoogle Scholar
  2. Ashley MV, Wilk JA, Styan SMN, Craft KJ, Jones KL, Feldheim KA, Lewers KS, Ashman TL (2003) High variability and disomic segregation of microsatellites in the octoploid Fragaria virginiana Mill (Rosaceae). Theor Appl Genet 107:1201–1207PubMedCrossRefGoogle Scholar
  3. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Evol Syst 16:113–148CrossRefGoogle Scholar
  4. Bassil NV, Gunn M, Folta KM, Lewers KS (2006a) Microsatellite markers for Fragaria from ‘Strawberry Festival’ expressed sequence tags. Mol Ecol Notes 6:473–476CrossRefGoogle Scholar
  5. Bassil NV, Njuguna W, Slovin JP (2006b) EST-SSR markers from Fragaria vesca L. cv. Yellow Wonder. Mol Ecol Notes 6:806–809CrossRefGoogle Scholar
  6. Bortiri E, Sang-Hun Oh, Jianguo J, Scott B, Andrew G, Clay W, Megan B, Daniel P, Dan EP (2001) Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst Bot 26:797–807Google Scholar
  7. Bringhurst RS (1990) Cytogenetics and evolution in American Fragaria. HortScience 25:879–881Google Scholar
  8. Bringhurst RS, Voth V (1984) Breeding octoploid strawberries. Iowa State J Res 58:371–381Google Scholar
  9. Bruneau A, Starr JR, Joly S (2009) Phylogenetic relationships in the genus Rosa: new evidence from chloroplast DNA sequences and an appraisal of current knowledge. Syst Bot 32:366–378CrossRefGoogle Scholar
  10. Chakraborty R, Jin L (1993) A unified approach to study hypervariable polymorphism: statistical considerations of determining relatedness and population distances. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ (eds) DNA fingerprinting: state of the science. Birkhäuser Verlag, Basel, pp 153–175CrossRefGoogle Scholar
  11. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  12. Cipriani G, Testolin R (2004) Isolation and characterization of microsatellite loci in Fragaria. Mol Ecol Notes 4:366–368CrossRefGoogle Scholar
  13. Darwin CH (1877) The various contrivances by which British and foreign orchids are fertilized by insects, 2nd edn. D Appleton and company, New YorkGoogle Scholar
  14. Davis TM, DiMeglio LM (2004) Identification of putative diploid genome donors to the octoploid cultivated strawberry, Fragaria ×ananassa. Plant and Animal Genome XII. San Diego, CA, January 10–14. (poster #603)Google Scholar
  15. Davis TM, DiMeglio LM, Yang R, Styan SMN, Lewers KS (2006) Assessment of SSR marker transfer from the cultivated strawberry to diploid strawberry species: functionality, linkage group assignment, and use in diversity analysis. J Am Soc Hortic Sci 131:506–512Google Scholar
  16. Davis TM, Shields ME, Reinhard AE, Reavey PA, Lin J, Zhang H, Mahoney LL (2010) Chloroplast DNA inheritance, ancestry, and sequencing in Fragaria. Acta Hortic 859:221–228Google Scholar
  17. Folta KM, Davis TM (2006) Strawberry genes and genomics. Crit Rev Plant Sci 25:399–415CrossRefGoogle Scholar
  18. Fukunaga K, Hill J, Vigouroux Y, Matsuoka Y, Sanchez J, Liu K, Buckler ES, Doebley J (2005) Genetic diversity and population structure of teosinte. Genetics 169:22241–22254CrossRefGoogle Scholar
  19. Gil-Ariza DJ, Amaya I, Botella MA, Blanco JM, Caballero JL, Lopez-Aranda JM, Valpuesta V, Sanchez-Sevilla JF (2006) EST-derived polymorphic microsatellites from cultivated strawberry (Fragaria ×ananassa) are useful for diversity studies and varietal identification among Fragaria species. Mol Ecol Notes 6:1195–1197CrossRefGoogle Scholar
  20. Govan C, Simpson D, Johnson A, Tobutt K, Sargent D (2008) A reliable multiplexed microsatellite set for genotyping Fragaria and its use in a survey of 60 F. ×ananassa cultivars. Mol Breed 22:649–661CrossRefGoogle Scholar
  21. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185CrossRefGoogle Scholar
  22. Hadonou AM, Sargent D, Wilson F, James CM, Simpson DW (2004) Development of microsatellite markers in Fragaria, their use in genetic diversity analysis, and their potential for genetic linkage mapping. Genome 47:429–438PubMedCrossRefGoogle Scholar
  23. Hancock JF (1999) Strawberries. CABI Publishing, OxfordGoogle Scholar
  24. Harrison RE, Luby JJ, Furnier GR (1997) Chloroplast DNA restriction fragment variation among strawberry (Fragaria spp.) taxa. J Am Soc Hortic Sci 122:63–68Google Scholar
  25. Harrison RE, Luby JJ, Furnier GR, Hancock JF, Cooley D (1998) Variation for susceptibility to crown rot and powdery mildew in wild strawberry from North America. Acta Hortic 484:43–48Google Scholar
  26. Huelsenbeck JP, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hummer KE, Davis T, Iketani H, Imanishi H (2006) American-Japanese expedition to Hokkaido to collect berry crops in 2004. HortScience 41:993Google Scholar
  28. Hummer K, Nathewet P, Yanagi T (2009) Decaploidy in Fragaria iturupensis Staudt (Rosaceae). Am J Bot 96:713–716PubMedCrossRefGoogle Scholar
  29. Iwasaki T, Adachi K, Moriya T, Miyamachi H, Matsushima T, Miyashita K, Takeda T, Taira T, Yamada T, Ohtake K (2004) Upper and middle crustal deformation of an arc–arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments. Tectonophysics 388:59–73CrossRefGoogle Scholar
  30. James CM, Wilson F, Hadonou AM, Tobutt KR (2003) Isolation and characterization of polymorphic microsatellites in diploid strawberry (Fragaria vesca L.) for mapping, diversity studies and clone identification. Mol Ecol Notes 3:171–173CrossRefGoogle Scholar
  31. Lawrence FJ, Galletta GJ, Scott DH (1990) Strawberry breeding work of the United States Department of Agriculture. HortScience 25:895–896Google Scholar
  32. Lewers KS, Styan SMN, Hokanson SC, Bassil NV (2005) Strawberry GenBank-derived and genomic simple sequence repeat (SSR) markers and their utility with strawberry, blackberry, and red and black raspberry. J Am Soc Hortic Sci 130:102–115Google Scholar
  33. Liu K, Muse S (2004) Powermarker: new genetic data analysis software. Version 3.0. 10 October 2005. http://www.powermarker.net
  34. Luby J, Hancock J, Dale A, Serce S (2008) Reconstructing Fragaria ×ananassa utilizing wild F. virginiana and F. chiloensis: inheritance of winter injury, photoperiod sensitivity, fruit size, female fertility and disease resistance in hybrid progenies. Euphytica 163:57–65CrossRefGoogle Scholar
  35. Mahoney LL, Quimby ML, Shields ME, Davis TM (2010) Mitochondrial DNA transmission, ancestry, and sequences in Fragaria. Acta Hortic 859:301–308Google Scholar
  36. Milne RI, Abbott RJ, Wolff K, Chamberlain DF (1999) Hybridization among sympatric species of rhododendron (Ericaceae) in Turkey: morphological and molecular evidence. Am J Bot 86:1776–1785PubMedCrossRefGoogle Scholar
  37. Monfort A, Vilanova S, Davis TM, Arús P (2006) A new set of polymorphic simple sequence repeat (SSR) markers from a wild strawberry (Fragaria vesca) are transferable to other diploid Fragaria species and to Fragaria ×ananassa. Mol Ecol Notes 6:197–200CrossRefGoogle Scholar
  38. Murfett J, Strabala T, Zurek D, Mou B, Beecher B, McClure B (1996) S RNase and interspecific pollen-rejection pathways contribute to unilateral incompatibility between self-incompatible and self-compatible species. Plant Cell 8:943–958PubMedCrossRefPubMedCentralGoogle Scholar
  39. Naruhashi N, Iwata T (1988) Taxonomic re-evaluation of Fragaria nipponica Makino and allied species. J Phytologia taxon 36:59–64Google Scholar
  40. Nybom H (2004) Comparison of different nuclear DNA markers for estimating interspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  41. Oda Y (2002) Photosynthetic characteristics and geographical distribution of diploid Fragaria species native in Japan. Acta Hortic 567:38–384Google Scholar
  42. Potter D, Luby JJ, Harrison RE (2000) Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Syst. Bot 25:337–348CrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  44. Reeves PA, Richards CM (2007) Distinguishing terminal monophyletic groups from reticulate taxa: Performance of phenetic, tree-based, and network procedures. Syst Biol 56:302–320PubMedCrossRefGoogle Scholar
  45. Rousseau-Gueutin M, Gaston A, Aïnouche A, Aïnouche ML, Olbricht K, Staudt G, Richard L, Denoyes-Rothan B (2009) Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. Mol Phylogenet Evol 51:515–530PubMedCrossRefGoogle Scholar
  46. Sargent DJ, Hadonou M, Simpson DW (2003) Development and characterization of polymorphic microsatellite markers from Fragaria viridis, a wild diploid strawberry. Mol Ecol Notes 3:550–552CrossRefGoogle Scholar
  47. Sargent DJ, Clark J, Simpson DW, Tobutt KR, Arús P, Monfort A, Vilanova S, Denoyes-Rothan B, Rousseau M, Folta KM, Bassil NV, Battey NH (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112:1349–1359PubMedCrossRefGoogle Scholar
  48. Sargent D, Fernandéz-Fernandéz F, Ruiz-Roja J, Sutherland B, Passey A, Whitehouse A, Simpson D (2009) A genetic linkage map of the cultivated strawberry (Fragaria ×ananassa) and its comparison to the diploid Fragaria reference map. Mol Breed 24:293–303CrossRefGoogle Scholar
  49. Sjulin T, Dale A (1987) Genetic diversity of North American strawberry cultivars. J Am Soc Hortic Sci 112:375–385Google Scholar
  50. Smedmark JEE, Eriksson T (2009) Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst Bot 27:303–317Google Scholar
  51. Staudt G (1989) The species of Fragaria, their taxonomy and geographical distribution. Acta Hortic 567:24–31Google Scholar
  52. Staudt G (1999) Systematics and geographic distribution of the american strawberry species. Taxonomic studies in the genus Fragaria (Rosaceae: Potentilleae). Publications in Botany 81. University of California Press, BerkeleyGoogle Scholar
  53. Staudt G (2005) Notes on Asiatic Fragaria species: IV. Fragaria iinumae. Bot Jahrb Sys 126:163–175CrossRefGoogle Scholar
  54. Staudt G (2006) Himalayan species of Fragaria (Rosaceae). Bot Jahrb Sys 126:483–508CrossRefGoogle Scholar
  55. Staudt G (2009) Strawberry biogeography, genetics and systematics. Acta Hortic 842:71–84Google Scholar
  56. Staudt G, Dickoré WB (2001) Notes on Asiatic Fragaria species: Fragaria pentaphylla Losinsk. and Fragaria tibetica spec. nov. Bot Jahrb Sys 123:341–354Google Scholar
  57. Staudt G, Olbricht K (2008) Notes on Asiatic Fragaria species V: F. nipponica and F. iturupensis. Bot Jahrb Sys 127:317–341CrossRefGoogle Scholar
  58. Wattier R, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573CrossRefGoogle Scholar
  59. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg Equilibrium. Am J Hum Genet 76:887–893PubMedCrossRefPubMedCentralGoogle Scholar
  60. Yang J, Pak JH (2006) Phylogeny of Korean Rubus (Rosaceae) based on its (nrDNA) and trnL/F intergenic region (cpDNA). J Plant Biol 49:44–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2011

Authors and Affiliations

  • Wambui Njuguna
    • 1
  • Kim E. Hummer
    • 2
  • Christopher M. Richards
    • 3
  • Thomas M. Davis
    • 4
  • Nahla V. Bassil
    • 2
  1. 1.Department of Horticulture, 4017 Agriculture and Life Science BuildingOregon State UniversityCorvallisUSA
  2. 2.United States Department of AgricultureAgricultural Research Service, National Clonal Germplasm RepositoryCorvallisUSA
  3. 3.United States Department of AgricultureAgricultural Research Service, National Center for Genetic Resources PreservationFort CollinsUSA
  4. 4.Department of Biological Sciences, Rudman HallUniversity of New HampshireDurhamUSA

Personalised recommendations