Skip to main content
Log in

Characterization of the gibberellic acid response of the Brassica napus L. em. Metzg. dwarf mutant NDF-1

  • Short Communication
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A novel dwarf mutant of Brassica napus L. em. Metzg., named NDF-1, was derived from a high doubled haploid line ‘3529’ of which seeds were jointly treated with chemical inducers and fast neutron bombardment. The germination results showed that the germination of NDF-1 was insensitive in response to exogenous gibberellic acid 3 (GA3). The studies on growth response to exogenous GA3 showed that NDF-1 seeding has at least 10-fold insensitivity than the wild-type. Moreover, no matter what concentrations of GA3 were added to the seedlings and adult plants, the NDF-1 could not restore the wild type phenotype. These results indicated that the B. napus dwarf mutant NDF-1 was GA-insensitive mutant. The histological observations showed that the key reason of leading NDF-1 to dwarf was the reduction of hypocotyls and stems cell numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Assmann SM (2005) G proteins go green: a plant g protein signaling FAQ sheet. Science 310:71–73

    Article  CAS  PubMed  Google Scholar 

  • Cowling RJ, Harberd NP (1999) Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 337:1351–1357

    Article  Google Scholar 

  • Dill A, Jung HS, Sun TP (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci USA 98:14162–14167

    Article  CAS  PubMed  Google Scholar 

  • Ellerström M, Reidt W, Ivanov R, Tiedemann J, Melzer M, Tewes A, Moritz T, Mock HP, Sitbon F, Rask L, Baumlein H (2005) Ectopic expression of EFFECTOR OF TRANSCRIPTION perturbs gibberellin-mediated plant developmental processes. Plant Mol Biol 59:663–681

    Article  PubMed  Google Scholar 

  • Feder N, O′Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Article  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc Natl Acad Sci USA 96:7575–7580

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822

    Article  CAS  PubMed  Google Scholar 

  • Lange T (1998) Molecular biology of gibberellin synthesis. Planta 204:409–419

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110

    Article  CAS  PubMed  Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384

    Article  CAS  PubMed  Google Scholar 

  • Muangprom A, Mauriera I, Osborn TC (2006) Transfer of a dwarf gene from Brassica rapa to oilseed B-Napus, effects on agronomic traits, and development of a ‘perfect’ marker for selection. Mol Breed 17:101–110

    Article  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar Duralalagaraja, Christou P, Snape JW, Gale MJ, Harberd NP (1999a) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Peng JR, Richards DE, Moritz T, Cano-Delgado A, Harberd NP (1999b) Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. Plant Physiol 119:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Phillips AL (1998) Gibberellins in Arabidopsis. Plant Physiol Bioch 36:115–124

    Article  CAS  Google Scholar 

  • Richards DE, King KE, Ait-ali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100:550–560

    Article  CAS  Google Scholar 

  • Sun TP (2000) Gibberellin signal transduction. Curr Opin Plant Biol 3:374–380

    Article  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638–11643

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  PubMed  Google Scholar 

  • Ullah H, Chen JG, Young JC, Im KH, Sussman MR, Jones AM (2001) Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science 292:2066–2069

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Zhao Y, Chen F, Yin XC (2004) Inheritance and potentials of a mutated dwarfing gene ndf1 in Brassica napus. Plant Breed 123:449–453

    Article  CAS  Google Scholar 

  • Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, Maier A, Schwechheimer C (2007) The DELLA Domain of GA INSENSITIVE Mediates the Interaction with the GA INSENSITIVE DWARF1A Gibberellin Receptor of Arabidopsis. Plant Cell 19:1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi S, Kamiya Y (2000) Gibberellin biosynthesis: its regulation by endogenous and environmental signals. Plant Cell Physiol 41:251–257

    Article  CAS  PubMed  Google Scholar 

  • Zanewich KP, Rood SB, Southworth CE, Williams PH (1991) Dwarf mutants of Brassica: responses to applied gibberellins and gibberellin content. J Plant Growth Regal 10:121–127

    Article  CAS  Google Scholar 

  • Zhao Y, Wang ML, Zhang YZ, Du LF, Pan T (2000) A chlorophyll-reduced seedling mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed 119:131–135

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National ‘863’ Programme (SN: 2001AA241104) and the 10th ‘five-year’ key task project in crop breeding of Sichuan Province (SN: 200107001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maolin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Li, T., Zhao, Y. et al. Characterization of the gibberellic acid response of the Brassica napus L. em. Metzg. dwarf mutant NDF-1 . Genet Resour Crop Evol 57, 481–485 (2010). https://doi.org/10.1007/s10722-010-9541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-010-9541-0

Keywords

Navigation