Skip to main content
Log in

Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A new wheat-Psathyrostachys huashanica amphiploid, PHW-SA, was characterized using molecular cytological tools to evaluate the potential utilization of P. huashanica for wheat improvement. PHW-SA pollen mother cells (PMCs) regularly revealed averagely 0.57 univalents, 24.51 ring bivalents, 3.19 rod bivalents and 0.01 trivalents per cell. Complete homologous chromosome pairing was seen in 81% of the PMCs, indicating a degree of cytological stability. P. huashanica C-banding karyotypes of PHW-SA displayed strong heterochromatin terminal bands at either or both ends. 24 P. huashanica chromosome arms showed telomeric bands. Using P. huashanica DNA as a probe and J-11 DNA as blocker, distinctive P. huashanica chromosomes, which were presented entirely greenish-yellow hybridization signals, were observed in a somatic metaphase of PHW-SA. GISH also revealed the chromosomal breakage and translocation occurring in the amphiploid PHW-SA, which may represent a centromeric fusion between P. huashanica and wheat chromosomes. Seeds storage proteins electrophoresis indicated that PHW-SA expressed some of P. huashanica specific gliadin and glutenin bands, and a few gliadin and glutenin bands of the parents disappeared and new bands appeared. The results indicated that the amphiploid PHW-SA could serve as novel germplasm sources for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baden C (1991) A taxonomic revision of Psathyrostachys (Poaceae). Nord J Bot 11:3–26. doi:10.1111/j.1756-1051.1991.tb01790.x

    Article  Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol Suppl 11:113–144

    Google Scholar 

  • Cao ZJ, Deng ZY, Wang MN, Wang XP, Jing JX, Zhang XQ, Shang HS, Li ZQ (2008) Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat—Psathyrostachys huashanica translocation line. Plant Sci 174:544–549

    CAS  Google Scholar 

  • Chen Q, Zhou RH, Li LH (1988) First intergenric hybrid between Triticum aestivum and Psathyrastachys juncea. Chin Sci Bull 33:2071–2074

    Google Scholar 

  • Chen SY, Zhang AJ, Fu J (1991) The hybridization between Triticum aestivum and Psathyrostachys huashanica. Acta Genet Sin 18:508–512

    Google Scholar 

  • Chi SY, Yu SS, Chang YH, Yu KH, Song FY (1979) Studies on wheat breeding by distant hybridization between wheat and Agropyron glaucum. Sci Agric Sin 2:1–11

    Google Scholar 

  • CIMMYT (2003) Wheat in the developing world. http://www.cimmyt.org/Research/wheat/map/developing_world/index.htm

  • Cook RJ (1987) The classification of wheat cultivars using a standard reference electrophoresis method. J Nat Agric Bot 17:273–281

    Google Scholar 

  • De Tomasi JA (1936) Improving the technic of the feulgen stain. Biotech Histochem 11:137–144. doi:10.3109/10520293609110513

    Article  Google Scholar 

  • Dewey DR (1984) The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum, New York, pp 209–280

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Endo TR, Gill BS (1984) Somatic karyotype, heterochromatin distribution and nature of chromosome differentiation in common wheat. Can J Genet Cytol 26:669–678

    Google Scholar 

  • Feldman L, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109:250–258. doi:10.1159/000082407

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. doi:10.1007/BF00035277

    Article  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Han FP, Liu B, Fedak G, Liu Z (2004) Genomic constitution and variation in five partial amphiploids of wheat—Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109:1070–1076. doi:10.1007/s00122-004-1720-y

    Article  CAS  PubMed  Google Scholar 

  • Hang Y, Jin Y, Lu BR (2004) Genetic diversity of the endangered species Psathyrostachys huashanica in China and its strategic conservation. J Fudan Univ Nat Sci 43:260–266

    Google Scholar 

  • Hsiao C, Wang RRC, Dewey DR (1986) Karyotype analysis and genome relationship of 22 diploid species in the tribe Triticeae. Can J Genet Cytol 28:109–120

    Google Scholar 

  • Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first ten years. Genome 37:717–725

    CAS  PubMed  Google Scholar 

  • Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212. doi:10.1007/BF00036700

    Article  Google Scholar 

  • Jing JX, Fu J, Yuan HX, Wang MN, Shang HS, Li ZQ (1999) A preliminary study on heredity of the resistance to stripe rust in three wild relatives of wheat. Acta Phytopathologica Sin 29:147–150

    Google Scholar 

  • Kang HY, Zhang HQ, Fan X, Zhou YH (2008) Morphological and cytogenetic studies on the hybrid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica 162:441–448. doi:10.1007/s10681-007-9608-y

    Article  Google Scholar 

  • Kang HY, Wang Y, Sun GL, Zhang HQ, Fan X, Zhou YH (2009) Production and characterization of an amphiploid between common wheat and Psathyrostachys huashanica Keng ex Kuo. Plant Breed 128:36–40. doi:10.1111/j.1439-0523.2008.01542.x

    Article  CAS  Google Scholar 

  • Kuo PC (1987) Flora Reipublicae Popularis Sinicae. Sci Press Beijing 9:51–104

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–204. doi:10.1007/BF02342540

    Article  Google Scholar 

  • Linde-Laursen I, Baden C (1994) Giemsa C-banded karyotypes of two cytotypes (2x, 4x) of Psathyrostachys lanuginosa (Poaceae; Triticeae). Plant Syst Evol 120:113–120

    Google Scholar 

  • Linde-Laursen I, von Bothmer R (1984) Identification of the somatic chromosomes of Psathyrostachys fragilis (Poaceae). Can J Genet Cytol 26:430–435

    Google Scholar 

  • Linde-Laursen I, von Bothmer R (1986) Comparison of the karyotypes of Psathyrostachys juncea and P. huashanica (Poaceae) studied by banding techniques. Plant Syst Evol 151:203–213. doi:10.1007/BF02430275

    Article  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1987) Cytogenetics of triticale. In: Janick J (ed) Plant breeding reviews, vol 5. AVI Publishing, NY, pp 41–93

    Google Scholar 

  • Molnár-Láng M, Linc G, Friebe B, Sutka J (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123. doi:10.1023/A:1003840200744

    Article  Google Scholar 

  • Mujeeb-Kazi A, Cortes A, Riera-Lizarazu O (1995) The cytogenetics of a Triticum turgidum × Psathyrostachys juncea hybrid and its backcross derivatives. Theor Appl Genet 90:430–437. doi:10.1007/BF00221986

    Article  Google Scholar 

  • Plourde A, Fedak G, St-Pierre CA, Comeau A (1990) A novel intergeneric hybrid in the Triticeae: Triticum aestivum × Psathyrostachys juncea. Theor Appl Genet 79:45–48. doi:10.1007/BF00223785

    Article  Google Scholar 

  • Reader SM, Abbo S, Purdie KA, King IP, Miller TE (1994) Direct labelling of plant chromosomes by rapid in situ hybridization. Trends Genet 10:265–266. doi:10.1016/0168-9525(90)90007-S

    Article  CAS  PubMed  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 13:713–715. doi:10.1038/182713a0

    Article  Google Scholar 

  • Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wild hybrid. Ann Bot (Lond) 64:315–324

    Google Scholar 

  • Sears ER (1955) An induced gene transfer from Aegilops to Triticum. Genetics 40:595

    Google Scholar 

  • Sears ER (1981) Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ (eds) Wheat science – today and tomorrow. Cambridge University Press, Cambridge, pp 75–89

    Google Scholar 

  • Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31. doi:10.1007/BF00036860

    Article  Google Scholar 

  • Wang MN, Shang HS (2000) Evaluation of resistance in Psathrostachys huashanica to wheat take-all fungus. Acta Univ Agric Borial-Occident 28:69–71

    CAS  Google Scholar 

  • Wang XE, Li WL, Liu DJ (1998) C-banding of two Psathyrostachys species. J Nanjing Agri Univ 21:l0–l13

    Google Scholar 

  • Yan ZH, Wan YF, Liu KF, Zheng YL, Wang DW (2002) Identification of a novel HMW glutenin subunit and comparison of its amino acid sequence with those of homologous subunits. Chin Sci Bull 47:220–225. doi:10.1360/02tb9053

    Article  Google Scholar 

  • Yang ZJ, Li GR, Chang ZJ, Zhou JP, Ren ZL (2006) Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149:11–17. doi:10.1007/s10681-005-9010-6

    Article  CAS  Google Scholar 

  • Yue M, Zhang LJ, Zhao GF (2001) Endangering reason and reproductive strategy of Psathyrostachys huashanica population. Acta Ecol Sin 21:1314–1320

    Google Scholar 

  • Zhao JX, Chen XH, Wang XL, Wu J, Fu J, He PR, Shun XJ (2004a) Molecular cytogenetic study on the alien substitution lines of Triticum-Psathyrostachys. Acta Bot Boreal-Occident Sin 24:2277–2281

    Google Scholar 

  • Zhao JX, Chen XH, Wang XL, Wu J, Fu J, He PR, Shun ZG (2004b) Molecular cytogenetic study on the alien addition lines of Triticum-Psathyrostachys. J Northwest Sci-Tech Univ Agric For (Nat Sci) 32:105–109

    Google Scholar 

  • Zhou RH, Jia JZ, Dong YC, Schwarzacher T, Miller TE, Reader S, Wu SB, Gale MD (1997) Characterization of progenies of Triticum aestivum-Psathyrostachys juncea derivatives by using genomic in situ hybridization. Sci China Ser C 40:657–664. doi:10.1007/BF02882697

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Natural Science Foundation of China (Nos. 30670150, 30870154), and the Education Bureau and Science and Technology Bureau of Sichuan Province, China for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Hong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HY., Chen, Q., Wang, Y. et al. Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica . Genet Resour Crop Evol 57, 111–118 (2010). https://doi.org/10.1007/s10722-009-9455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9455-x

Keywords