Skip to main content
Log in

Diversity analysis of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan (Mimosaceae) using phenotypic traits, chromosome counting and DNA content approaches

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan (Family Fabaceae; subfamily Mimosoideae) is a pioneer tree of dry areas. In spite of its several uses, there are no any published studies which deal with genetic diversity of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan in Tunisia. For this reason, here we study its genetic diversity with morphometric (only in Tunisian populations), chromosome counting, and cytometric (in Tunisian and Ziambabwean populations) approaches. Morphological field studies of four Tunisian populations (Bouhedma, Haddej, Hajeb and Gtar, respectively, designated as A, B, C, D) of A. tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan using a general linear model (ANOVA) revealed statistically highly-significant differences between populations for all examined characters (P < 0.0001). Significant differences were found also between genotypes for the majority of morphological traits (P < 0.0001) except the width of 10 pods (laP), weight of 10 pods (Wt) and seed number of 10 pods (Sn) (P ≥ 0.110). The variability in the tree, pod and seed characters can be exploited for agro-industrial purposes. The DNA amount and chromosome numbers of populations Umguza and Gwaii River from Ziambabwe and of Tunisian populations A, B, C and D were determined. Tunisian populations had 2C nuclear DNA contents of 2.95–3.03 pg, and were shown to be tetraploid (2n = 4x = 52), whilst the two Ziambabwean populations had 1.39–1.40 pg and were diploid (2n = 2x = 26). It is suggested that the Tunisian populations are paleotetraploids, adapted to the more-arid local conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Archibald S, Bond WJ (2003) Growing tall vs growing wide: tree architecture and allometry of A. karroo in forest, savanna, and arid environments. Oikos 102:3–14. doi:10.1034/j.1600-0706.2003.12181.x

    Article  Google Scholar 

  • Bains KS, Sood KC (1984) Resolution of genetic divergence for choice of parents in soybean breeding. Crop Improv 11:20–24

    Google Scholar 

  • Batnouny KH (1994) Indigenous desert trees and shrubs for agroforestry in Arid lands. 1st International Symposium on Silviculture of Protection Forestry in Arid Regions and the Agroforestry Potential ARC, NARP and USAID, Alexandria

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot (Lond) 76:113–176. doi:10.1006/anbo.1995.1085

    Article  CAS  Google Scholar 

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in angiosperms and their modern uses—807 new estimates. Ann Bot (Lond) 86:859–909. doi:10.1006/anbo.2000.1253

    Article  CAS  Google Scholar 

  • Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514

    Article  CAS  PubMed  Google Scholar 

  • Blakesley D, Allen A, Pellny TK, Roberts AV (2002) Natural and induced polyploidy in Acacia dealbata Link and Acacia mangium Willd. Ann Bot (Lond) 90:391–398. doi:10.1093/aob/mcf202

    Article  CAS  Google Scholar 

  • Bukhari YM (1997) Cytoevolution of taxa in Acacia and Prosopis (Mimosaceae). Aust J Bot 45(5):879–891. doi:10.1071/BT96066

    Article  Google Scholar 

  • Doležel J (1997) Application of flow cytometry for the study of plant genomes. J Appl Genet 38:285–302

    Google Scholar 

  • Doležel J, Sgorbati S, Lucretti S (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 85:625–631. doi:10.1111/j.1399-3054.1992.tb04764.x

    Article  Google Scholar 

  • Doležel J, Bartos J, Vogelmayer H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51(A):127–128

    Article  PubMed  Google Scholar 

  • El Ferchichi A (1997) Contribution à l’étude caryologique, caryosystématique, morpho-biologique et écologique de la flore de la Tunisie présaharienne. Doctorat d’état es—sciences biologiques, Université de Tunis II, Faculté des Sciences de Tunis. pp 86–88

  • El Ferchichi Ouarda H, Hcini K, Bouzid S (2006) Chromosome numbers in Tunisian populations of Atriplex halimus L. (Chenopodiaceae). Afr J Biotechnol 5(12):1190–1193

    CAS  Google Scholar 

  • Emshwiller E (2002) Ploidy levels among species in the “Oxalis tuberosa alliance” as inferred by flow cytometry. Ann Bot (Lond) 89:741–753. doi:10.1093/aob/mcf135

    Article  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188

    Google Scholar 

  • Frahm-Leliveld J (1957) Observation cytologique sur quelques Legumineuses tropicales et subtropicales. Rev Cytol Biol Veg 18:273–292

    Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA measurement—flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Plant cells. Wiley, VCH, New York, pp 67–101

    Google Scholar 

  • Hcini K, Walker DJ, Bouzid S, González E, Frayssinet N, Correal E (2006) Determination of ploidy level and nuclear DNA content in Tunisian populations of Atriplex halimus L. Genet Resour Crop Evol 53:1–5. doi:10.1007/s10722-005-5806-4

    Article  CAS  Google Scholar 

  • Hcini K, El Ferchichi Ouarda H, Bouzid S (2007) Morphological variability of fruit and chromosome numbers in Tunisian populations of Atriplex halimus L. (Chenopodiaceae). Caryologia 60(3):203–211

    Google Scholar 

  • Hocking D (1993) Trees for drylands. International Science Publisher, New York

    Google Scholar 

  • Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia 123:32–40. doi:10.1007/s004420050986

    Article  Google Scholar 

  • Humphreys MO (1991) A genetic approach to the multivariate differentiation of perennial ryegrass (Lolium perenne L.) cultivars. Heredity 66:437–443. doi:10.1038/hdy.1991.53

    Article  Google Scholar 

  • Kennenni L (2008) Geography and phytosociology of Acacia tortilis in the Sudan. Afr J Ecol 29(1):1–10. doi:10.1111/j.1365-2028.1991.tb00814.x

    Article  Google Scholar 

  • Le Houérou HN (1981) Impact of man and his animals on Mediterranean vegetation. In: di Castri F, Goodall DW, Specht RL (eds) Ecosystems of the world. 11. Mediterranean-type Shrublands. Elsevier, Amsterdam, pp 479–521

    Google Scholar 

  • Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132

    Google Scholar 

  • Lysák MA, Rostková A, Dixon JM, Rossi G, Doležel J (2000) Limited genome size variation in Sesleria albicans. Ann Bot (Lond) 86:399–403. doi:10.1006/anbo.2000.1200

    Article  CAS  Google Scholar 

  • Maydell HJ (1990) Arbres et arbustes du Sahel leurs caractéristiques et leurs utilisations. Josef Margraf Scientific Book, Germany

    Google Scholar 

  • Mboumba GB (2006) Assessment of quantitative and genetic molecular variation of Acacia karoo in two extreme populations. Thesis. Faculty of Agricultural and Forestry Sciences, University of Stellenbosch, p 103

  • Membrives N, Pedrola-Monfort J, Caujapé-Castells J (2003) Correlations between morphological- anatomical leaf characteristics and environmental traits in southwest African species of Androcymbium (Colchicaceae). Bot Macaronesica 24:73–85

    Google Scholar 

  • Mukherjee S, Sharma AK (1995) In situ nuclear DNA variation in Australian species of Acacia. Cytobios 75:33–36

    Google Scholar 

  • Noirot M, Barre P, Louarn C, Duperray C, Hamon S (2000) Nucleus–cytosol interactions—a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot (Lond) 86:309–316. doi:10.1006/anbo.2000.1187

    Article  CAS  Google Scholar 

  • Qiang W, Wang XL, Chen T, Feng HY, An LS, He YQ, Wang G (2003) Variation in stomatal density and carbon isotope values in Picea crassifolia at different altitudes in Qilian Mountains. Trees (Berl) 17:258–262

    Google Scholar 

  • Raddad EY, Luukkanen O (2006) Adaptive genetic variation in water use efficiency and gum yield in Acacia senegal provenances grown on clay soil in the Blue Nile region, Sudan. For Ecol Manag 226:219–229. doi:10.1016/j.foreco.2006.01.036

    Article  Google Scholar 

  • Reese G (1957) Über die Polyploidiespektren in den nordsaharischen Wüstenpflanzen. Flora 144(4):598–634

    Google Scholar 

  • Riggs TJ (1973) The use of canonical analysis for selection within a cultivar of spring barley. Ann Appl Biol 74:249–258. doi:10.1111/j.1744-7348.1973.tb07745.x

    Article  Google Scholar 

  • Roshetko JM (2001) Agroforestry species and technologies: a compilation of the highlights and factsheets published by NFTA and FACT Net 1895–1999. A Publication of Winrock International, Morrilton

    Google Scholar 

  • Ross JH (1975) Notes on African Acacia species. Bothalia 11:443–447

    Google Scholar 

  • Ross JH (1979) A conspectus of the African Acacia species. Mem Bot Surv S Afr 44:93–95

    Google Scholar 

  • Sanderson SC, Mcarthur ED, Stutz HC (1989) A relationship between polyploidy and habitat in western shrub species. USDA For Serv Gen Techn Rep 256:23–30

    Google Scholar 

  • Soltis PE, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057. doi:10.1073/pnas.97.13.7051

    Article  CAS  PubMed  Google Scholar 

  • Song K, Lu P K, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Nat Acad Sci USA 92:7719–7772

    Article  CAS  PubMed  Google Scholar 

  • Stutz HC (1989) Evolution of shrubs. In: McKell CM (ed) The biology and utilization of shrubs. Academic Press, San Diego, pp 323–340

    Google Scholar 

  • Vaylay R, van Santen E (2002) Application of canonical discriminant analysis for the assessment of genetic variation in tall fescue. Crop Sci 42:534–539

    Article  Google Scholar 

  • Verzino G, Carranza C, Ledesma M, Joseau J, Di Rienzo J (2003) Adaptive genetic variation of Prosopis chilensis (Molina) Stuntz. Preliminary results from one test-site. For Ecol Manage 175:119–129. doi:10.1016/S0378-1127(02)00124-X

    Article  Google Scholar 

  • Walker DJ, Moñino I, González E, Frayssinet N, Correal E (2005) Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Bot J Linn Soc 147:441–448. doi:10.1111/j.1095-8339.2004.00379.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Institut National de Recherche en Génie Rural Eaux et Forêts (Tunisia) and by the Consejería de Agricultura y Agua de la Región de Murcia (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héla El Ferchichi Ouarda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Ferchichi Ouarda, H., Walker, D.J., Khouja, M.L. et al. Diversity analysis of Acacia tortilis (Forsk.) Hayne ssp. raddiana (Savi) Brenan (Mimosaceae) using phenotypic traits, chromosome counting and DNA content approaches. Genet Resour Crop Evol 56, 1001–1010 (2009). https://doi.org/10.1007/s10722-009-9418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-009-9418-2

Keywords

Navigation