Skip to main content
Log in

Genetic basis of species differentiation between Coffea liberica Hiern and C. canephora Pierre: Analysis of an interspecific cross

  • Original Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The phenotypic and genetic differentiation between the two related Coffea species (C. liberica Hiern and C. canephora Pierre) was examined. These species differed markedly in terms of leaf, inflorescence, fruit and seed characters. A genetic map of the interspecific cross Coffea liberica × C. canephora was constructed on the basis of 72 BC1 hybrids. Eighty-three AFLP markers, four inter simple sequence repeats (ISSR) and five microsatellites corresponding to Coffea liberica species-specific markers were mapped into 16 linkage groups. The total length of the map was 1502.5 cM, with an average of 16.3 cM between markers and an estimated genome coverage of 81%. The two species were evaluated relative to 16 quantitative traits and found to be significantly different for 15 of them. Eight QTLs were detected, associated with variations in petiole length, leaf area, number of flowers per inflorescence, fruit shape, fruit disc diameter, seed shape and seed length. Results on segregation distortion and the under-representation of particular markers were interpreted in terms of genome differentiation. The implications for the introgression of QTLs involved in advantageous morphological traits (number of flowers per inflorescence, fruit and seed shape) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achere V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, and Favre JM (2004) A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613

    Article  PubMed  CAS  Google Scholar 

  • Aluko G, Martinez C, Tohme J, Castano C, Bergman C, Oard JH (2004) QTL mapping of grain quality traits from the interspecific cross Oryza sativa × O. glaberrima. Theor Appl Genet 109:630–639

    Article  PubMed  CAS  Google Scholar 

  • Anthony F, Clifford MN, and Noirot M (1993) Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Genet Resour Crop Evol 40:61–70

    Article  Google Scholar 

  • Baruah A, Naik P, Hendre S, Rajkumar R, Rajendra kumar P, and Aggarwal RK (2003) Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing wide cross-species amplifications. Mol Ecol Notes 3:647–650

    Article  CAS  Google Scholar 

  • Basten CJ, Weir BS, and Zeng ZB (2002) QTL Cartographer, version 1.16. Department of Statistics, North Carolina State University, Raleigh, N.C

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, and Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A, Lasher LK and Reefer JE (1991) A maximum likelihood method for estimating genome length using linkage data. Genetics 128:175–182

    PubMed  CAS  Google Scholar 

  • Churchill GA and Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cloutier S, Cappadocia M and Landry BS (1997) Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet 95:83–91

    Article  CAS  Google Scholar 

  • Coulibaly I, Louarn J, Lorieux M, Charrier A, Hamon S and Noirot M (2003a) Pollen viability restoration in a Coffea canephora P. and C. heterocalyx Stoffelen backcross. QTL identification for marker-assisted selection. Theor Appl Genet 106:311–316

    CAS  Google Scholar 

  • Coulibaly I, Revol B, Noirot M, Poncet V, Lorieux M, Carasco-Lacombe C, Minier J, Dufour M, Hamon P (2003b) AFLP and SSR polymorphism in a Coffea interspecific backcross progeny [(C. heterocalyx ×  C. canephora) × C. canephora]. Theor Appl Genet 107:1148–1155

    Article  CAS  Google Scholar 

  • Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL, Kaya N, VanToai TT, Lohnes DG, Chung J, and Specht JE (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490

    Article  CAS  Google Scholar 

  • Fishman L, Kelly AJ, Morgan E and Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    PubMed  CAS  Google Scholar 

  • Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES and Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958

    PubMed  CAS  Google Scholar 

  • Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I and Huguet T (1997) Insight on segregation distortions in two intraspecific crosses between annual species of Medicago Leguminosae. Theor Appl Genet 94:682–691

    Article  Google Scholar 

  • Joshi SP, Ranjekar PK, and Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230–240

    CAS  Google Scholar 

  • Kim S-C and Rieseberg LH (1999) Genetic architecture of species differences in annual sunflowers: implications for adaptive trait introgression. Genetics 153:965–977

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eug 12:172–175

    Google Scholar 

  • Ky CL, Louarn J, Guyot B, Charrier A, Hamon S and Noirot M (1999) Relations between and inheritance of chlorogenic acid contents in an interspecific cross between Coffea pseudozanguebariae and Coffea liberica var. ‘Dewevrei’. Theor Appl Genet 98:628–637

    Article  CAS  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, and Noirot M (2000a) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee Coffea sp. Theor Appl Genet 101:669–676

    Article  CAS  Google Scholar 

  • Ky CL, Doulbeau S, Guyot B, Akaffou S, Charrier A, Hamon S, Louarn J and Noirot M (2000b) Inheritance of coffee bean sucrose content in the interspecific cross Coffea pseudozanguebariae × Coffea liberica ’dewevrei’. Plant Breed 119:165–168

    Article  Google Scholar 

  • Ky CL, Louarn J, Dussert S, Guyot B, Hamon S and Noirot M (2001a) Caffeine, trigonelline, chlorogenic acids and sucrose diversity in wild Coffea arabica L. and C.␣canephora P. accessions. Food Chem 75:223–230

    Article  CAS  Google Scholar 

  • Ky CL, Guyot B, Louarn J, Hamon S and Noirot M (2001b) Trigonelline inheritance in the interspecific Coffea pseudozanguebariae × C. liberica var. dewevrei cross. Theor Appl Genet 102:630–634

    Article  CAS  Google Scholar 

  • Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120–1130.

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln S and Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lange K and Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Am J Hum Genet 34:842–845

    PubMed  CAS  Google Scholar 

  • Lashermes P, Combes MC, Trouslot P, Charrier A (1997) Phylogenetic relationships of coffee-tree species Coffea L. as inferred from ITS sequences of nuclear ribosomal DNA. Theor Appl Genet 94:947–955

    Article  CAS  Google Scholar 

  • Le Pierrès D (1995) Etude des hybrides interspécifiques tétraploïdes de première génération entre Coffea arabica L. et les caféiers diploïdes. Thèse Doctorale, Université Paris XI, Orsay France.

  • Lexer C, Rosenthal DM, Raymond O, Donovan LA, Rieseberg LH (2004) Genetics of species differences in the wild annual sunflowers, Helianthus annuus and Helianthus petiolaris. (Genetics Published Articles Ahead of Print)

  • Lincoln SE and Lander ES (1992) Systematic detection of errors in genetic linkage data. Genomics San Diego 14:604–610

    Article  CAS  Google Scholar 

  • Louarn J (1992) La fertilité des hybrides interspécifiques et les relations génomiques entre caféiers diploïdes d’origine africaine Genre Coffea L. sous-genre Coffea. Thèse d’Etat. Montpellier II, Sciences et Techniques du Languedoc, Montpellier, France

  • Mei M, Syed NH, Gao W, Thaxton PM, Smith CW, Stelly DM and Chen ZJ (2004) Genetic mapping and QTL analysis of fiber-related traits in cotton Gossypium. Theor Appl Genet 108:280–291

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602

    Article  CAS  Google Scholar 

  • N’Diaye A, Poncet V, Louarn J, Hamon S and Noirot M (2005) Genetic differentiation between Coffea liberica var. liberica and C. liberica var. Dewevrei and comparison with C. canephora. Plant Syst Evol 253: 95–104

    Article  CAS  Google Scholar 

  • Noirot M, Poncet V, Barre P, Hamon P, Hamon S and De Kochko A (2003) Genome size variations in diploid African Coffea species. Ann Bot Lond 92:709–714

    Article  PubMed  CAS  Google Scholar 

  • Pearl HM, Nagai C, Moore PH, Steiger DL, Osgood RV and Ming R (2004) Construction of a genetic map for arabica coffee. Theor Appl Genet 108:829–835

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Hamon P, Minier J, Carasco C, Hamon S, Noirot M (2004) SSR cross-amplification and variation within coffee trees Coffea spp. Genome 47:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, de Kochko A, Hamon P (2006) SSR mining in coffee tree databases. Potential use of EST-SSRs as markers for Coffea genus. Mol Genet Genomics (in press)

  • Prakash NS, Marques DV, Varzea VM, Silva MC, Combes MC and Lashermes P (2004) Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet 109:1311–1317

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Stam P. and Lindhout P. (1998) Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96:376–384

    Article  CAS  Google Scholar 

  • Rao GU, Ben Chaim A., Borovsky Y. and Paran I. (2003) Mapping of yield-related QTLs in pepper in an␣interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • Ryman N and Jorde PE (2001) Statistical power when testing for genetic differentiation. Mol Ecol 10:2361–2373

    Article  PubMed  CAS  Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH and Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Stoffelen P (1998) Coffea and Psilanthus Rubiaceae. in tropical Africa: a systematic and palynological study, including a revision of the West and Central African species. PhD, Leuven Katholieke Univ., PhD thesis

  • Tsarouhas V, Gullberg U and Lagercrantz U (2002) An AFLP and RFLP linkage map and quantitative trait locus QTL. analysis of growth traits in Salix. Theor Appl Genet 105:277–288

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J and Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Yin TM, Wang XR, Andersson B and Lerceteau Kohler E (2003) Nearly complete genetic maps of Pinus sylvestris L. Scots pine constructed by AFLP marker analysis in a full-sib family. Theor Appl Genet 106:1075–1083

    PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. P. Hamon for her encouraging support, critical reading and valuable comments on an earlier version of the manuscript. This work was supported by the government of Côte d’Ivoire and IRD fellowships to A.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poncet Valérie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amidou, N., Michel, N., Serge, H. et al. Genetic basis of species differentiation between Coffea liberica Hiern and C. canephora Pierre: Analysis of an interspecific cross. Genet Resour Crop Evol 54, 1011–1021 (2007). https://doi.org/10.1007/s10722-006-9195-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9195-0

Keywords