Seed germination and triterpenoid content of Anemopaegma arvense (Vell.) Stellfeld varieties

Abstract

Anemopaegma arvense (Vell.) Stellfeld, Bignoniaceae, is a native species of the Brazilian savanna (Cerrado) and is commonly known as catuaba among the local farmers. Seeds of three varieties were collected in different localities and submitted to germination and storage studies in attempting to domesticate this species as a medicinal crop for small farmers located in Brazilian Cerrado. Germination tests revealed that catuaba seeds presented a dormancy period of 6 weeks, and 63% of the seedlings have emerged after 12 weeks of the planting time. Storing catuaba seeds at low temperatures (−20 and −196°C) has not affected emergence and survival. These findings suggested that A. arvense seeds have an orthodox behavior resisting well to dehydration and low temperature storage. Three catuaba varieties were characterized morphologically and chemically. The presence of triterpenes such as oleanolic acid and betulinic acid were identified and quantified in these varieties. Previous report has shown that these compounds have promising anticancer activities and herein the results point that the aerial parts yielded more triterpenes than the roots. The combination of higher capacity and preferential accumulation of triterpenes in the aerial parts of catuaba makes this plant a potential candidate for agricultural production or in situ sustainable harvests as a promising alternative to the destructive collection of the natural population.

This is a preview of subscription content, access via your institution.

References

  1. Bolta Z, Baricevic D, Bohanec B, Andrensek S (2000) A preliminary investigation of ursolic acid in cell suspension culture of Salvia officinalis. Plant Cell Tiss Org Cult 62:57–63

    Article  CAS  Google Scholar 

  2. Botezelli L, Davide AC, Malavasi MM (2000) Características dos frutos e sementes de quatro procedência de Dipteryx alata Vogel (Baru). Cerne 6(1):9–18

    Google Scholar 

  3. Ferreira MB (1973) Bignoneaceae do Distrito Federal – O genero Anemopaegma Mart. Oreades 6:28–39

    Google Scholar 

  4. Fulda S, Debatin KM (2000) Betulinic acid induces apoptosis through a direct effect on mitochondria in neuroectodermal tumors. Med Pediat Oncol 35:616–618

    Article  CAS  Google Scholar 

  5. Gemaque RCR, Davide AC, Faria JMR (2002) Indicadores de maturidade fisiológica de sementes de ipê-roxo (Tabebuia impetiginosa (Mart.) Standl.). Cerne 8(2):87–94

    Google Scholar 

  6. Hamet R (1937) Su quelques effets physiologiques de la drogue brésilienne connue sous le nom de “folhas de catuaba”. Com Rendus Soc Biol 124:904–907

    Google Scholar 

  7. Kermode AR (1990) Regulatory mechanisms involved in the transition from seed development to germination. Critic Rev Plant Sci 9:155–195

    CAS  Article  Google Scholar 

  8. Kokou Y, Akio M, Shoji N, Koho KT (2000) Skin external use agent. JP-patent Number 2000143482. May 23

  9. Koltunow AM, Hidata T, Robinson SP (1996) Polyembryony in citrus. Accumulation of seed storage proteins in seeds and in embryos cultured in vitro. Plant Phys 110(2):599–609

    Article  CAS  Google Scholar 

  10. Laurence GHM (1963) Taxonomy of vascular plants. The McCmillan Co, New York, NY

    Google Scholar 

  11. Lee I, Lee YH, Leonard J (2002) Ursolic acid induced changes in tumor growth O2 consumption and tumor interstitial fluid pressure. Anticancer Res 21:2827–2834

    Google Scholar 

  12. Mahato S, Kundu AP (1994) 13C NMR spectra of pentacyclic triterpenoids – a compilation and some salient features. Phytochem 37(6):1517–1575

    Article  CAS  Google Scholar 

  13. Mello CMC, Eira MTS (1995) Conservação de sementes de jacaranda mimosos (Jacaranda acutifolia Humb. & Bonpl.-Bignoniaceae). Rev Bras Sem 17(2):193–196

    Google Scholar 

  14. Mio K, Inoue A, Yokoyama D, Atsushi N, Ishimaru H, Midorikawa T (2003) Oral hair growth stimulants containing odd-numbered fatty acids, or alcohols, plant or algae extracts, and/or tocotrienol and foods containing them. JP-patent 2003160486. June 3

  15. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nat 403:853–858

    Article  CAS  Google Scholar 

  16. Pereira AMS, Amui SF, Bertoni BW, Moraes RM, França SC (2003) Micropropagation of Anemopaegma arvense: conservation of an endangered medicinal plant. Planta Med 69:571–573

    PubMed  Article  CAS  Google Scholar 

  17. Shimizu H (2001) Antioxidant containing plant extracts for cosmetics and pharmaceuticals. JP-patent 20011139417. May 22

  18. Shnell RJ (1994) Eliminating zygotic seedlings in Turpentine mango rootstock population by visual rouging. HortSci 29(4):319–320

    Google Scholar 

  19. Tokuda H, Ohigashi H, Kopshimizu K, Ito K (1986) Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecabiykogirbik-13-acetate. Cancer Let 33:279–285

    Article  CAS  Google Scholar 

  20. Uchino T, Kawahara N, Sekita S, Satake M, Saito Y, Tokunaga H, Ando M (2004) Potent protecting effects of Catuaba (Anemopaegma mirandum) extracts against hydroperoxide-induced cytotoxicity. Toxicol In Vitro 18:255–263

    PubMed  Article  CAS  Google Scholar 

  21. Urech K, Scher JM, Hostanska K, Becker H (2005) Apoptosis inducing activity of viscin a lipophyllic extract from Viscum album L. J Pharm Pharmacol 57:101–109

    PubMed  Article  CAS  Google Scholar 

  22. Yamashita M, Fujita S (2002) Cosmetics containing sunscreen agents and plant extracts. PR–patent 2002308750. Oct. 23

  23. Zschocke S, Rabe T, Taylor JLS, Jäger Ak, van Staden J (2000) Plant part substitution – a way to conserve endangered medicinal plants? J Ethnopharm 71:281–291

    Article  CAS  Google Scholar 

  24. Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Gambacorti-Passerini C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines but not on normal cells. Cancer Let 175:17–25

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Research funded by FAPESP, The State of Sao Paulo Research Foundation, Brazil. Project Number (Projeto tematico—Biota 99/10610).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rita M. Moraes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pereira, A.M.S., Salomão, A.N., Januario, A.H. et al. Seed germination and triterpenoid content of Anemopaegma arvense (Vell.) Stellfeld varieties. Genet Resour Crop Evol 54, 849–854 (2007). https://doi.org/10.1007/s10722-006-9161-x

Download citation

Keywords

  • Anemopaegma arvense
  • Bignoneaceae
  • Catuaba
  • Medicinal plant
  • Oleanolic acid
  • Seed germination
  • Triterpenes