Skip to main content
Log in

Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions

  • Original Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Bread wheat (Triticum aestivum L.) landraces held within ex situ collections offer a valuable and largely unexplored genetic resource for wheat improvement programs. To maximise full utilisation of such collections the evaluation of landrace accessions for traits of interest is required. In this study, 250 accessions from 21 countries were screened sequentially for tolerance to aluminium (Al) using haematoxylin staining of root tips and by root regrowth measurement. The staining test indicated tolerance in 35 accessions, with an intermediate response to Al exhibited in a further 21 accessions. Of the 35 accessions classified as tolerant, 33 also exhibited increased root length following exposure to Al. The tolerant genotypes originated from Bulgaria, Croatia, India, Italy, Nepal, Spain, Tunisia, and Turkey. AFLP analysis of the 35 tolerant accessions indicated that these represent diverse genetic backgrounds. These accessions form a valuable set of germplasm for the study of Al tolerance and may be of benefit to breeding programs for expanding the diversity of the gene pool from which tolerant cultivars are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aniol A (1990) Genetics of tolerance to aluminium in wheat (Triticum aestivum L. em. Thell.). Plant Soil 123:223–227

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminium tolerance in wheat, rye and triticale. Can J Genet Cytol 26:701–705

    Google Scholar 

  • Baier AC, Somers DL, Gustafson JP (1995) Aluminium tolerance in wheat: correlating hydroponic evaluation with field and soil performances. Plant Breed 114:291–296

    Article  CAS  Google Scholar 

  • Bennet RJ, Breen CM (1991) The aluminium signal: new dimensions to mechanisms of aluminium tolerance. Plant Soil 134:153–166

    CAS  Google Scholar 

  • Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. In: Sparks DL (ed) Advances in agronomy. Academic Press Inc., San Diego, pp 117–173

    Google Scholar 

  • Coombes NE (2002) The reactive tabu search for efficient correlated experimental designs. PhD Thesis, Liverpool John Moores University, Liverpool, UK

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.). Part II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2002) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA

  • Foy CD (1983) The physiology of plant adaptation to mineral stress. Iowa State J Res 57:355–392

    CAS  Google Scholar 

  • Foy CD, Charnay RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Fu YB, Peterson GW, Richards KW, Somers D, DePauw RM, Clarke JM (2005) Allelic reduction and genetic shift in Canadian hard red spring wheat germplasm released from 1845 to 2004. Theor Appl Genet 110:1505–1516

    Article  PubMed  Google Scholar 

  • Gallardo F, Borie F, Alvear M, von-Baer E (1999) Evaluation of aluminium tolerance of three barley cultivars by two short-term screening methods and field experiments. Soil Sci Plant Nutr 45:713–719

    CAS  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    Article  CAS  Google Scholar 

  • Haug A (1983) Molecular aspects of aluminium toxicity. CRC Crit Rev Plant Sci 1:345–373

    Article  Google Scholar 

  • Hede AR, Skovmand B, Ribaut JM, González-De-león D, Stølen O (2002) Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed 121:241–248

    Article  CAS  Google Scholar 

  • Kihara H (1983) Origin and history of ‘Daruma’, a parental variety of Norin 10. In: Sakamoto S (ed) Proc. 6th Int. Wheat Genetics Symp., Kyoto University Press, Kyoto, Japan, November 28–December 3, 1983, pp 13–19

  • Kochian LV (1995) Cellular mechanisms on aluminium toxicity and resistance in plants. Annu Rev Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kohli MM, Rajaram S (1988) Wheat breeding for acid soils: review of Brazilian/CIMMYT collaboration, 1974–1986. CIMMYT, Mexico, DF

    Google Scholar 

  • Minella E, Sorrells ME (1992) Aluminium tolerance in barley: genetic relationships among genotypes of diverse origin. Crop Sci 32:593–598

    Article  CAS  Google Scholar 

  • Mugwira LM, Elgawhary SM, Patel SU (1976) Differential tolerances of triticale, wheat, rye, and barley to aluminium in nutrient solution. Agron J 68:782–787

    Article  CAS  Google Scholar 

  • Mugwira LM, Elgawhary SM, Patel SU (1978) Aluminium tolerance in triticale, wheat and rye as measured by root growth characteristics and aluminium concentrations. Plant Soil 50:681–690

    Article  CAS  Google Scholar 

  • NLWRA (2001) National Land and Water Resources Audit. The Natural Heritage Trust, Commonwealth of Australia

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose free) wheats. Mol Gen Genet 248:253–259

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian L (2001) Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  PubMed  CAS  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminium tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Raman H, Moroni JS, Sato K, Read BJ, Scott BJ (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Raman R, Tolhurst R, Martin P (2006) Repetitive indel markers within the ALMT-1 gene controlling aluminium tolerance in wheat (Triticum aestivum L.). Submited

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Rao IM, Zeigler RS, Vera R, Sarkarung S (1993) Selection and breeding for acid-soil tolerance in crops. Bioscience 43:454–465

    Article  Google Scholar 

  • Reid DA, Fleming AL, Foy CD (1971) A method for determining aluminium response of barley in nutrient solution in comparison to response to Al-toxic soil. Agron J␣63:600–603

    Article  CAS  Google Scholar 

  • Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 145:239–259

    Article  Google Scholar 

  • Roussel V, Koenig J, Bechert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterisation of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PJ, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Scott BJ, Conyers MK, Poile GJ, Cullis BR (1997) Subsurface acidity and liming affect yield of cereals. Aust J Agric Res 48:843–854

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (eds) (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman and Co., San Francisco

    Google Scholar 

  • SoE (2001) State of the environment report prepared by A Hamblin. Department for the Environment, Canberra, ACT, Australia

    Google Scholar 

  • Stodart BJ, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell) from different geographical regions. Aust J Agric Res 56:691–697

    Article  CAS  Google Scholar 

  • Worland AJ (1986) Gibberellic acid insensitive dwarfing genes in Southern European wheats. Euphytica 35:857–866

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reilans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support given under the Preservation of Biological Assets program by the BioFirst initiative of the New South Wales Government, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Raman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stodart, B., Raman, H., Coombes, N. et al. Evaluating landraces of bread wheat Triticum aestivum L. for tolerance to aluminium under low pH conditions. Genet Resour Crop Evol 54, 759–766 (2007). https://doi.org/10.1007/s10722-006-9150-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9150-0

Keywords

Navigation