Skip to main content
Log in

AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters

  • Research Paper
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Amplified fragments length polymorphism (AFLP) was used to distinguish 20 cultivars of sesame (Sesamum indicum L.) and to elucidate the genetic relationship among these genotypes. The data were also used to estimate the usefulness of parameters currently used to assess the informativeness of molecular markers. A total of 339 markers were obtained using 8 primer combinations. Of the bands, 91% were polymorphic. Five primer combinations were able to distinguish all 20 cultivars used. None of the remaining three primer combinations could distinguish all accessions if used alone, but using all three combinations reduced the probability of a random match to 5 × 10−5. Polymorphic information content (PIC), resolving power (Rp) and marker index (MI) of each primer combination failed to correlate significantly with the number of genotypes resolved. Jaccard’s similarity coefficients ranged from 0.31 to 0.78. Fifteen cultivars were grouped by four UPGMA-clusters supported by bootstrapping values larger than 0.70. The grouping pattern was similar to the grouping generated by principal coordinate analysis. The results demonstrated that AFLP-based fingerprints can be used to identify unequivocally sesame genotypes, which is needed for cultivar identification and for the assessment of the genetic variability of breeding stocks. We recommend to use the number of cultivars identified by a primer combination instead of PIC, Rp and MI; and to calculate the maximal, instead of average probability of identical match by chance in the assessment of the informativeness of a marker for cultivar identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archak S, Gaikwad B, Gautam D, Rao E, Swamy K, Karihaloo J (2003) DNA fingerprinting of Indian cashew (Anacardium occidentale L.) varieties using RAPD and ISSR techniques. Euphytica 230:397–404

    Article  Google Scholar 

  • Ashri A (1998) Sesame breeding. Plant Breed Rev 16:179–228

    Google Scholar 

  • Bohn M, Utz H, Melchinger A (1999) Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci 39:228–237

    Article  CAS  Google Scholar 

  • Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus. BMC Plant Biol 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dangi RS, Lagu MD, Choudhary LB, Ranjekar PK, Gupta VS (2004) Assessment of genetic diversity in Trigonella foenum-graecum and Trigonella caerulea using ISSR and RAPD markers. BMC Plant Biol 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  • De Riek J, Calsyn E, Everaert I, Van Bockstaele E, De Loose M (2001) AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet 103:1254–1265

    Article  Google Scholar 

  • FAO (2005) FAOstat Databases. http://www.faostat.fao.org/

  • Fernandez M, Figueiras A, Benito C (2002) The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor Appl Genet 104:845–851

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Chuah A (2003) A format for databasing and comparison of AFLP fingerprint profiles. BMC Bioinformatics 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Karp A, Kresovich S, Bhat K, Ayad W, Hodgkin T (1997) Molecular tools in plant genetic resources conservation: a guide to the technology. IPGRI Technical Bulletin No. 2. International Plant Genetic Resources Institute, Rome, Italy

  • Langham D, Rodriguez M (1946) Dos nuevas variedades de ajonjolí Venezuela 51 y Venezuela 52. Circular No. 15. Departamento de Genetica. Dirección de Agricultura. Maracay. Venezuela

  • Laurentin H, Layrisse A, Quijada P (2000) Evaluación de dos ciclos de selección recurrente para altos rendimientos de semilla en una población de ajonjolí. Agronomía Tropical (Maracay) 50:521–535

    Google Scholar 

  • Laurentin H, Pereira C, Sanabria M (2003) Phytochemical characterization of six sesame (Sesamum indicum L.) genotypes and their relationships with resistance against whitefly (Bemisia tabaci Gennadius). Agronomy J 95(6):1577–1582

    Article  CAS  Google Scholar 

  • Laurentin H, Montilla D, Garcia V (2004) Relación entre el rendimiento de ocho genotipos de ajonjolí (Sesamum indicum L.) y sus componentes. Comparación de metodologías. Bioagro 16:153–162

    Google Scholar 

  • Laurentin H, Karlovsky P (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism. BMC Genet 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzani B (1952) Una nueva variedad de ajonjolí producica en el Instituto Nacional de Agricultura. Agronomía Tropical (Maracay) 1:269–277

    Google Scholar 

  • Mazzani B (1953) Inamar: nueva variedad de ajonjolí producidad en el Instituto Nacional de Agricultura. Agronomía Tropical (Maracay) 3:211–213

    Google Scholar 

  • Mazzani B, Nava C, Martinez A, Layrisse A (1973) Maporal, una nueva variedad de ajonjoli para los Llanos Occidentales. Agronomia Tropical 23:501–508

    Google Scholar 

  • Milbourne D, Meyer R, Bradshaw J, Baird E, Bonar N, Provan J, Powell W, Waught R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed 3:127–136

    Article  CAS  Google Scholar 

  • de Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JF, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

    Article  PubMed Central  Google Scholar 

  • Montilla D, Cedeño T (1991) Fonucla: una nueva variedad de ajonjolí (Sesamum indicum L.). Bioagro 3:52–54

    Google Scholar 

  • Montilla D, Teran H (1996) UCLA1, una nueva variedad de ajonjolí (Sesamum indicum L.). Bioagro 8:26–29

    Google Scholar 

  • Muminovic J, Melchinger A, Lübberstedt T (2004) Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Breed 123:460–466

    Article  CAS  Google Scholar 

  • Ovesná J, Poláková K, Leisová L (2002) DNA analyses and their applications in plant breeding. Czech J Genet Plant Breed 38:29–40

    Google Scholar 

  • Powell W, Margenta M, Andre C, Hanfrey M, Vogel J, Tingey S, Rafalsky A (1996) The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Prevost A, Wilkinson M (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112

    Article  CAS  Google Scholar 

  • Rajora O, Rahman M (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna W, Lagu M, Gupta V, Ranjekar P (1994) DNA fingerprinting in rice using oligonucleotide probes specific for simple repetitive DNA sequences. Theor Appl Genet 88:402–406

    Google Scholar 

  • Rao N (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145

    Google Scholar 

  • Reineke A, Karlovsky P (2000) Simplified AFLP protocol: replacement of primer labeling by the incoporation of α-labeled nucleotides during PCR. BioTechniques 28:622–623

    CAS  PubMed  Google Scholar 

  • Roldán-Ruiz I, Dendauw J, VanBockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Salazar B, Laurentin H, Dávila M, Castillo M (2006) Reliability of the RAPD technique for germplasm analysis of sesame (Sesamum indicum L.) from Venezuela. Interciencia 31:456–460

    Google Scholar 

  • Savelkoul P, Aarts H, DeHaas J, Dijkshoorn L, Duim B, Otsen M, Rademaker J, Schouls L, Lenstra J (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37:3083–3091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stodart B, Mackay M, Raman H (2005) AFLP and SSR analysis of genetic diversity among landraces of bread wheat (Triticum aestivum L. em. Thell.) from different geographic regions. Aust J Agric Res 56:691–697

    Article  CAS  Google Scholar 

  • Tams S, Melchinger A, Bauer E (2005) Genetic similarity among European winter triticale elite germplasm assessed with AFLP and comparisons with SSR and pedigree data. Plant Breed 124:154–160

    Article  CAS  Google Scholar 

  • Voss P, Hogers R, Bleeter M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  Google Scholar 

  • Wetton J, Carter R, Parkin D, Walters D (1987) Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327:147–149

    Article  CAS  PubMed  Google Scholar 

  • Zhang LH, Ozias-Akins P, Kochert G, Kresovich S, Dean R, Hanna W (1999) Differentiation of bermudagrass (Cynodon spp.) genotypes by AFLP analysis. Theor Appl Genet 98:895–902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Programme Alban, European Union Programme of High Level Scholarships for Latin America, Identification Number E03D13301VE, International PhD program for Agricultural Sciences in Göttingen University (IPAG) and Universidad Centroccidental Lisandro Alvarado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Laurentin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurentin, H., Karlovsky, P. AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genet Resour Crop Evol 54, 1437–1446 (2007). https://doi.org/10.1007/s10722-006-9128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-9128-y

Keywords

Navigation