Genetic Resources and Crop Evolution

, Volume 54, Issue 1, pp 21–25 | Cite as

Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry

  • João LoureiroEmail author
  • Eleazar Rodriguez
  • Armando Costa
  • Conceição Santos
Short communication


Olive tree (Olea europaea L.) is an economically important woody fruit crop widely distributed in the Mediterranean regions. In this work the genome size of six Portuguese cultivars of olive (O. europaea ssp. europaea var. europaea) and wild olive (O. europaea spp. europaea var. sylvestris) was estimated for the first time. The nuclear DNA content of O. europaea cultivars ranged between 2.90 ± 0.020 pg/2C and 3.07 ± 0.018 pg/2C and the genome size of wild olive was estimated as 3.19 ± 0.047 pg/2C DNA. These results suggest a low intraspecific variation at least among the studied cultivars and between them and wild olive. This is not in accordance with previous results in some Italian cultivars where high genome size heterogeneity was found. The methodology presented here seems appropriate for genome size estimations within this genus and opens good perspectives for a large screening of estimation of nuclear DNA content among O. europaea cultivars and Olea species that could clarify this issue.


Flow cytometry Genome size Intraspecific variation Nuclear DNA content Olea europaea Wild olive 



The authors thank Dr. Rosário Barroso (Direcção Regional de Agricultura de Trás-os-Montes, Mirandela, Portugal) for providing the plant material of Olea europaea cultivars used in this study. This work was supported by the FCT/MCES project POCTI/AGR/60672/2004. FCT also supported the fellowship of João Loureiro (FCT/SFRH/BD/9003/2002).


  1. Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195PubMedCrossRefGoogle Scholar
  2. Cavallini A, Natali L, Giordani T, Durante M, Cionini PG (1996) Nuclear DNA changes within Helianthus annuus L.: variations in the amount and methylation of repetitive DNA within homozygous progenies. Theor Appl Genet 92:285–291CrossRefGoogle Scholar
  3. Doležel J (1997) Applications of flow cytometry for the study of plant genomes. J Appl Genet 38:285–302Google Scholar
  4. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  5. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120Google Scholar
  6. Doležel J, Greilhuber J, Lucretti S, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82:17–26CrossRefGoogle Scholar
  7. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128CrossRefGoogle Scholar
  8. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell-cycle in intact plant-tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  9. Galbraith DW, Lambert GM, Macas J, Doležel J (2002) Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson JP, Darzynkiewicz Z, Dean PN, Dressler LG, Rabinovitch PS, Stewart CV, Tanke HJ, Wheeless LL (eds) Current protocols in cytometry. John Wiley & Sons, New York, pp 7.6.1–7.6.22Google Scholar
  10. Gemas VJV, Almadanim MC, Tenreiro R, Martins A, Fevereiro P (2004) Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Genet Resour Crop Evol 51:501–511CrossRefGoogle Scholar
  11. Greilhuber J (1998) Intraspecific variation in genome size: A critical reassessment. Ann Bot 82:27–35CrossRefGoogle Scholar
  12. Jarret RL, Ozias-Akins P, Phatak S, Nadimpalli R, Duncan R, Hiliard S (1994) DNA contents in Paspalum spp. determined by flow cytometry. Genet Resour Crop Evol 42:237–242CrossRefGoogle Scholar
  13. Johnston JS, Jensen A, Czeschin DG, Price HJ (1996) Environmentally induced nuclear 2C DNA content instability in Helianthus annuus (Asteraceae). Am J Bot 83:1113–1120CrossRefGoogle Scholar
  14. Price HJ, Johnston JS (1996) Influence of light on DNA content of Helianthus annuus Linnaeus. Proc Natl Acad Sci USA 93:11264–11267PubMedCrossRefGoogle Scholar
  15. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934CrossRefGoogle Scholar
  16. Rugini E (1995) Somatic embryogenesis in olive (Olea europaea L.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic Embryogenesis in Woody Plants. Kluwer Academic Publishers, Dordrect, Boston, London, pp 171–189Google Scholar
  17. Rugini E, Lavee S (1992) Olive. In: Hammerschlag FA, Litz RE (eds) Biotechnology of Perennial Fruit Crops. C.A.B. International, Wallingford, pp 371–382Google Scholar
  18. Rugini E, Pannelli G, Ceccarelli M, Muganu M (1996) Isolation of triploid and tetraploid olive (Olea europaea L.) plants from mixoploid cv. ‘Frantoio’ and ‘Leccino’ mutants by in vivo and in vitro selection. Plant Breed 115:23–27CrossRefGoogle Scholar
  19. Suda J (2004) An employment of flow cytometry into plant biosystematics. PhD dissertation, Charles University, Prague. Available on

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • João Loureiro
    • 1
    Email author
  • Eleazar Rodriguez
    • 1
  • Armando Costa
    • 1
  • Conceição Santos
    • 1
  1. 1.Laboratory of Biotechnology and Cytomics, Department of BiologyUniversity of AveiroAveiroPortugal

Personalised recommendations