Skip to main content
Log in

Genetic Variation and Population Structure in a Eurasian Collection of Isatis tinctoria L.

Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Isatis tinctoria L. is a biennial species which was cultivated in Europe until the 18th century to produce indigo, a pigment used for dyestuffs. Today there is renewed interest in this ancient crop because of a market demand for natural dyes. Cultivation of the species appears to be particularly suitable for marginal areas. Information about the evolutionary and genetic patterns of I. tinctoria is needed if varieties or to be developed in future breeding programs. The aim of this study was to assess the genetic variation and similarity levels among and within natural populations of I. tinctoria from Europe and central Asia. Fifteen populations were used to carry out the genetic analyses with AFLP and SAMPL molecular markers. Data collected were analysed by the UPGMA method and were used to perform AMOVA. The results are consistent with the hypothesis that the crop originated in an eastern centre of origin and moved westward giving rise to a gene pool that is quite different from the original. The wide within-population variation revealed by this study suggests that effective breeding work to develop varieties suitable for marginal environments can be carried out easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aguado-Santacruz G.A., Leyva-López N.E., Pérez-Márquez K.I., García-Moya E., Arredondo M. and Martínez-Soriano J.P. (2004). Genetic variability of Bouteloua gracilis populations differing in forage production at the southernmost part of the North American Graminetum. Plant. Ecol. 170: 287–299

    Article  Google Scholar 

  • Angelini L.G. and Belloni P. (1993). Caratteristiche botanichemorfologiche e agronomiche di specie di interesse tintorio. L’Informatore Agrario 47: 52–60

    Google Scholar 

  • Bassin S., Kölliker R., Cretton C., Bertossa M., Widmar F., Bungener P. and Fuhrer J. (2004). Intra-specific variability of ozone sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone concentrations. Environ. Pol. 131: 1–12

    Article  CAS  Google Scholar 

  • Benham J., Jeung J.U., Jasieniuk M., Kanazin V. and Blake T. (1999). Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J. Agr. Gen. 4: 1–3

    Google Scholar 

  • Bussel J.D. (1999). The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775–789

    Article  Google Scholar 

  • Darlington C.D. and Wyle A.P. (1955). Chromosome Atlas of Flowering Plants. George Allen & Unwin Ltd, London

    Google Scholar 

  • Excoffier L., Smouse P.E. and Quattro J.M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes; application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Gilbert J.E., Lewis M.J., Wilkinson M.J. and Caligari P.D.S. (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98: 1125–1131

    Article  CAS  Google Scholar 

  • Gilbert K.G. and Cooke D.T. (2001). Dyes from plants: past usagepresent understanding and potential. Plant Growth Reg. 34: 57–69

    Article  CAS  Google Scholar 

  • Gilbert K.G., Garton S., Karam M.A., Arnold G.M., Karp A., Edwards K.J., Cooke D.T. and Barker J.H.A. (2002). A high degree of genetic diversity is revealed in Isatis spp. (dyer's woad) by amplified fragment length polymorphism (AFLP). Theor. Appl. Genet. 1041: 1150–1156

    Google Scholar 

  • Guarino C., Casoria P. and Menale B. (2000). Cultivation and use of Isatis tinctoria L. (Brassicaceae) in Southern Italy. Econ. Bot. 54(3): 395–400

    Google Scholar 

  • Guthridge K.M., Dupal M.P., Kolliker R., Jones E.S., Smith K.F. and Forster J.W. (2001). AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne). Euphytica 122: 191–201

    Article  CAS  Google Scholar 

  • Hamburger M. (2002). Phytochem. Rev. 1: 333–344

    Article  CAS  Google Scholar 

  • Hamrick J.L. and Godt M.J.W. (1990). Allozyme diversity in plant species. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L. and Sinauer, B.S. Weir. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp 43–63. Sunderland, Massachusetts

    Google Scholar 

  • Hill D.J. (1992). Production of natural indigo in the United Kingdom. Beit. Wa. 4/5: 3–26

    Google Scholar 

  • Juan A., Crespo B., Cowan R.S., Lexer C. and Fay F. (2004). Patterns of variability and gene flow in Medicago citrinaan endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Mol. Ecol. 13: 2679–2690

    Article  PubMed  CAS  Google Scholar 

  • Kokubun T., Edmonds J. and John P. (1998). Indoxyl derivatives in woad in relation to medieval indigo production. Phytochemistry 49(1): 79–87

    Article  CAS  Google Scholar 

  • Kölliker R., Jones E.S., Jahaufer M.Z.Z. and Forster J.W. (2001). Bulked analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica 121: 305–315

    Article  Google Scholar 

  • Kongkiatngam P., Waterway M.J., Coulman B.E. and Fortin M.G. (1996). Genetic variation among cultivars of red clover (Trifolium pratense L.) detected by RAPD markers amplified from bulk genomic DNA. Euphytica 89: 355–361

    CAS  Google Scholar 

  • Kropp B.R., Hansen D.R. and Thomson S.V. (2002). Establishment and dispersal of Puccinia thlaspeos in field population on dyer's woad. Plant Disease 86: 241–246

    Google Scholar 

  • Mantel N.A. (1967). The detection of disease clustering and generalized regression approach. Cancer Res. 27: 209–220

    PubMed  CAS  Google Scholar 

  • Maugrad T., Enaud E., Choisy P. and Legoy M.D. (2001). Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry 58: 897–904

    Article  Google Scholar 

  • Moreira Reis A.M. and Grattapaglia D. (2004). RAPD variation in germplasm collection of Myracrodruon urundeuva (Anacardiaceae), an endangered tropical tree: recommendations for conservation. Genet. Resour. Crop. Evol. 51: 529–538

    Article  CAS  Google Scholar 

  • Morgante M. and Vogel J. 1994. Compound microsatellite primers for the detection of genetic polymorphisms. U.S. Patent Application No. 08/326456.

  • Nebauer S.G., de Castillo-Agudo L. and Segura J. (1999). RAPD variation within and among populations of outcrossing willow-leaved foxglove (Digitalis obsura L.). Theor. Appl. Genet. 98: 985–994

    Article  CAS  Google Scholar 

  • Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70: 3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. U.S.A. 74: 5267–5273

    Google Scholar 

  • Rohlf F.J. (1993). NTSYS.PC. Numerical Taxonomy and Multivariate Analysis SystemVersion 2.11Q. Applied Biostatistics Inc., New York

    Google Scholar 

  • Rohlf F.J. and Fisher D.L. (1968). Test for hierarchical structure in random data set. Syst. Zool. 17: 407–412

    Article  Google Scholar 

  • Rottenberg A. and Parker J.S. (2003). Conservation of the critically endangered Rumex rothschildianus as implied from AFLP diversity. Biol. Conserv. 114: 299–303

    Article  Google Scholar 

  • Schneider S, Roessli D. and Excoffier L. (2000). Arlequin ver. 2000. A Software for Population Genetics Analysis. Genetic and Biometry Laboratory of Geneva, Switzerland

    Google Scholar 

  • Singh A., Chaudhury A., Srivastava P.S. and Lakshmikumaran M. (2002). Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss. Plant. Sci. 162: 17–25

    Article  CAS  Google Scholar 

  • Skøt L., Sackville Hamilton N.R., Mizen S., Chorlton K.H. and Thomas I.D. (2002). Molecular genecology of temperature response in Lolium perenne: 2. association of AFLP markers with ecogeography. Mol. Ecol. 11: 1865–1876

    Article  PubMed  Google Scholar 

  • Sneath P.H.A. and Sokal R.R. (1973). Numerical Taxanomy: The Principles and Practice of Numerical Classification. WH Freeman, San Francisco, C.A

    Google Scholar 

  • Southern E.M. (1979). Measurement of DNA length by gel electrophoresis. Anal. Biochem. 100: 319–323

    Article  PubMed  CAS  Google Scholar 

  • Stoker K.G., , Cooke D.T. and Hill D.J. (1998). Influence of light on natural indigo production from woad (Isatis tinctoria). Plant. Growth. Reg. 25: 181–185

    Article  CAS  Google Scholar 

  • Tseng Y.T., Lo H.F. and Hwang S.Y. (2002). Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot. Bull. Acad. Sin. 43: 99–105

    CAS  Google Scholar 

  • Vos P., Hogers R., Bleeker M., Rijans M., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zebeau M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang D.L., Li Z.C., Hao G., Chiang T.Y. and Ge X.J. (2004). Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochem. Syst. Ecol. 32: 797–807

    Article  CAS  Google Scholar 

  • Yeh F.C, Yang R.C. and Boyle T. 1999. POPGENE (Version 1.3.2). Microsoft Windows-Bases Freeware for Population Genetic Analysis. University of Alberta and the Centre for International Forestry Research. Available from: http:// www.ualberta.ca/.

  • Yu K.F. and Pauls K.P. (1993). Segregation of random amplified polymorphic DNA (RAPD) markers and strategies for mapping in tetraploid alfalfa. Genome 36: 844–851

    CAS  Google Scholar 

  • Zohary D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet. Resour. Crop. Evol. 46: 133–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spataro, G., Taviani, P. & Negri, V. Genetic Variation and Population Structure in a Eurasian Collection of Isatis tinctoria L.. Genet Resour Crop Evol 54, 573–584 (2007). https://doi.org/10.1007/s10722-006-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-0014-4

Key words

Navigation