Genetic Resources and Crop Evolution

, Volume 54, Issue 3, pp 573–584 | Cite as

Genetic Variation and Population Structure in a Eurasian Collection of Isatis tinctoria L.

Article

Abstract

Isatis tinctoria L. is a biennial species which was cultivated in Europe until the 18th century to produce indigo, a pigment used for dyestuffs. Today there is renewed interest in this ancient crop because of a market demand for natural dyes. Cultivation of the species appears to be particularly suitable for marginal areas. Information about the evolutionary and genetic patterns of I. tinctoria is needed if varieties or to be developed in future breeding programs. The aim of this study was to assess the genetic variation and similarity levels among and within natural populations of I. tinctoria from Europe and central Asia. Fifteen populations were used to carry out the genetic analyses with AFLP and SAMPL molecular markers. Data collected were analysed by the UPGMA method and were used to perform AMOVA. The results are consistent with the hypothesis that the crop originated in an eastern centre of origin and moved westward giving rise to a gene pool that is quite different from the original. The wide within-population variation revealed by this study suggests that effective breeding work to develop varieties suitable for marginal environments can be carried out easily.

Key words

AFLP and SAMPL molecular markers AMOVA Bulking strategy Gene diversity Isatis tinctoria 

References

  1. Aguado-Santacruz G.A., Leyva-López N.E., Pérez-Márquez K.I., García-Moya E., Arredondo M. and Martínez-Soriano J.P. (2004). Genetic variability of Bouteloua gracilis populations differing in forage production at the southernmost part of the North American Graminetum. Plant. Ecol. 170: 287–299CrossRefGoogle Scholar
  2. Angelini L.G. and Belloni P. (1993). Caratteristiche botanichemorfologiche e agronomiche di specie di interesse tintorio. L’Informatore Agrario 47: 52–60Google Scholar
  3. Bassin S., Kölliker R., Cretton C., Bertossa M., Widmar F., Bungener P. and Fuhrer J. (2004). Intra-specific variability of ozone sensitivity in Centaurea jacea L., a potential bioindicator for elevated ozone concentrations. Environ. Pol. 131: 1–12CrossRefGoogle Scholar
  4. Benham J., Jeung J.U., Jasieniuk M., Kanazin V. and Blake T. (1999). Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J. Agr. Gen. 4: 1–3Google Scholar
  5. Bussel J.D. (1999). The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775–789CrossRefGoogle Scholar
  6. Darlington C.D. and Wyle A.P. (1955). Chromosome Atlas of Flowering Plants. George Allen & Unwin Ltd, LondonGoogle Scholar
  7. Excoffier L., Smouse P.E. and Quattro J.M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes; application to human mitochondrial DNA restriction data. Genetics 131: 479–491PubMedGoogle Scholar
  8. Gilbert J.E., Lewis M.J., Wilkinson M.J. and Caligari P.D.S. (1999). Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor. Appl. Genet. 98: 1125–1131CrossRefGoogle Scholar
  9. Gilbert K.G. and Cooke D.T. (2001). Dyes from plants: past usagepresent understanding and potential. Plant Growth Reg. 34: 57–69CrossRefGoogle Scholar
  10. Gilbert K.G., Garton S., Karam M.A., Arnold G.M., Karp A., Edwards K.J., Cooke D.T. and Barker J.H.A. (2002). A high degree of genetic diversity is revealed in Isatis spp. (dyer's woad) by amplified fragment length polymorphism (AFLP). Theor. Appl. Genet. 1041: 1150–1156Google Scholar
  11. Guarino C., Casoria P. and Menale B. (2000). Cultivation and use of Isatis tinctoria L. (Brassicaceae) in Southern Italy. Econ. Bot. 54(3): 395–400Google Scholar
  12. Guthridge K.M., Dupal M.P., Kolliker R., Jones E.S., Smith K.F. and Forster J.W. (2001). AFLP analysis of genetic diversity within and between populations of perennial ryegrass (Lolium perenne). Euphytica 122: 191–201CrossRefGoogle Scholar
  13. Hamburger M. (2002). Phytochem. Rev. 1: 333–344CrossRefGoogle Scholar
  14. Hamrick J.L. and Godt M.J.W. (1990). Allozyme diversity in plant species. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L. and Sinauer, B.S. Weir. (eds) Plant Population Genetics, Breeding and Genetic Resources, pp 43–63. Sunderland, MassachusettsGoogle Scholar
  15. Hill D.J. (1992). Production of natural indigo in the United Kingdom. Beit. Wa. 4/5: 3–26Google Scholar
  16. Juan A., Crespo B., Cowan R.S., Lexer C. and Fay F. (2004). Patterns of variability and gene flow in Medicago citrinaan endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Mol. Ecol. 13: 2679–2690PubMedCrossRefGoogle Scholar
  17. Kokubun T., Edmonds J. and John P. (1998). Indoxyl derivatives in woad in relation to medieval indigo production. Phytochemistry 49(1): 79–87CrossRefGoogle Scholar
  18. Kölliker R., Jones E.S., Jahaufer M.Z.Z. and Forster J.W. (2001). Bulked analysis for the assessment of genetic diversity in white clover (Trifolium repens L.). Euphytica 121: 305–315CrossRefGoogle Scholar
  19. Kongkiatngam P., Waterway M.J., Coulman B.E. and Fortin M.G. (1996). Genetic variation among cultivars of red clover (Trifolium pratense L.) detected by RAPD markers amplified from bulk genomic DNA. Euphytica 89: 355–361Google Scholar
  20. Kropp B.R., Hansen D.R. and Thomson S.V. (2002). Establishment and dispersal of Puccinia thlaspeos in field population on dyer's woad. Plant Disease 86: 241–246Google Scholar
  21. Mantel N.A. (1967). The detection of disease clustering and generalized regression approach. Cancer Res. 27: 209–220PubMedGoogle Scholar
  22. Maugrad T., Enaud E., Choisy P. and Legoy M.D. (2001). Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry 58: 897–904CrossRefGoogle Scholar
  23. Moreira Reis A.M. and Grattapaglia D. (2004). RAPD variation in germplasm collection of Myracrodruon urundeuva (Anacardiaceae), an endangered tropical tree: recommendations for conservation. Genet. Resour. Crop. Evol. 51: 529–538CrossRefGoogle Scholar
  24. Morgante M. and Vogel J. 1994. Compound microsatellite primers for the detection of genetic polymorphisms. U.S. Patent Application No. 08/326456.Google Scholar
  25. Nebauer S.G., de Castillo-Agudo L. and Segura J. (1999). RAPD variation within and among populations of outcrossing willow-leaved foxglove (Digitalis obsura L.). Theor. Appl. Genet. 98: 985–994CrossRefGoogle Scholar
  26. Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. U.S.A. 70: 3321–3323PubMedCrossRefGoogle Scholar
  27. Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci. U.S.A. 74: 5267–5273Google Scholar
  28. Rohlf F.J. (1993). NTSYS.PC. Numerical Taxonomy and Multivariate Analysis SystemVersion 2.11Q. Applied Biostatistics Inc., New YorkGoogle Scholar
  29. Rohlf F.J. and Fisher D.L. (1968). Test for hierarchical structure in random data set. Syst. Zool. 17: 407–412CrossRefGoogle Scholar
  30. Rottenberg A. and Parker J.S. (2003). Conservation of the critically endangered Rumex rothschildianus as implied from AFLP diversity. Biol. Conserv. 114: 299–303CrossRefGoogle Scholar
  31. Schneider S, Roessli D. and Excoffier L. (2000). Arlequin ver. 2000. A Software for Population Genetics Analysis. Genetic and Biometry Laboratory of Geneva, SwitzerlandGoogle Scholar
  32. Singh A., Chaudhury A., Srivastava P.S. and Lakshmikumaran M. (2002). Comparison of AFLP and SAMPL markers for assessment of intra-population genetic variation in Azadirachta indica A. Juss. Plant. Sci. 162: 17–25CrossRefGoogle Scholar
  33. Skøt L., Sackville Hamilton N.R., Mizen S., Chorlton K.H. and Thomas I.D. (2002). Molecular genecology of temperature response in Lolium perenne: 2. association of AFLP markers with ecogeography. Mol. Ecol. 11: 1865–1876PubMedCrossRefGoogle Scholar
  34. Sneath P.H.A. and Sokal R.R. (1973). Numerical Taxanomy: The Principles and Practice of Numerical Classification. WH Freeman, San Francisco, C.AGoogle Scholar
  35. Southern E.M. (1979). Measurement of DNA length by gel electrophoresis. Anal. Biochem. 100: 319–323PubMedCrossRefGoogle Scholar
  36. Stoker K.G., , Cooke D.T. and Hill D.J. (1998). Influence of light on natural indigo production from woad (Isatis tinctoria). Plant. Growth. Reg. 25: 181–185CrossRefGoogle Scholar
  37. Tseng Y.T., Lo H.F. and Hwang S.Y. (2002). Genotyping and assessment of genetic relationships in elite polycross breeding cultivars of sweet potato in Taiwan based on SAMPL polymorphisms. Bot. Bull. Acad. Sin. 43: 99–105Google Scholar
  38. Vos P., Hogers R., Bleeker M., Rijans M., Hornes M., Frijters A., Pot J., Peleman J., Kuiper M. and Zebeau M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414PubMedCrossRefGoogle Scholar
  39. Wang D.L., Li Z.C., Hao G., Chiang T.Y. and Ge X.J. (2004). Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochem. Syst. Ecol. 32: 797–807CrossRefGoogle Scholar
  40. Yeh F.C, Yang R.C. and Boyle T. 1999. POPGENE (Version 1.3.2). Microsoft Windows-Bases Freeware for Population Genetic Analysis. University of Alberta and the Centre for International Forestry Research. Available from: http:// www.ualberta.ca/.Google Scholar
  41. Yu K.F. and Pauls K.P. (1993). Segregation of random amplified polymorphic DNA (RAPD) markers and strategies for mapping in tetraploid alfalfa. Genome 36: 844–851Google Scholar
  42. Zohary D. (1999). Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet. Resour. Crop. Evol. 46: 133–142CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Dipartimento di Biologia Vegetale e Biotecnologie Agro-ambientali e Zootecniche (DBVBAZ)Università degli Studi di PerugiaPerugiaItaly

Personalised recommendations