Skip to main content

Advertisement

Log in

Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic structure of three wild populations (Xinyuan, Gongliu and Daxigou) of apricot in the Ily Valley, Xinjiang Uygur Autonomous Region of China, was investigated with microsatellite (simple sequence repeat, SSR) markers. The higher polymorphism and greater transportability of these markers between Prunus species proved SSR markers were much efficient for conducting genetic diversity studies in wild apricot. Nei's gene diversity (He) and Shannon's index of diversity (I) were 0.287 and 0.458, respectively. This indicated that the wild apricot in the Ily Valley still maintained a relatively high level of diversity. The Gst of 0.137 and Fst of 0.164 revealed that genetic variation mainly resided among individuals within populations (83.6–86.3%). Population differentiation could also be found according to the distribution of SSR alleles between the populations. Mantel test showed the genetic distance between populations was significantly correlated to the geographical distance. The modest amount of gene flow (2.684) would reduce the disjunction between wild apricots. The long-distance dispersal of pollen by insects was probably the main way of gene flow between populations. Based on the study of population genetic structure, an effective conservation strategy of the species was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barreneche T., Bodenes C., Lexer C, Trontin J.F., Fluch S., Streiff R., Plomion C., Roussel G., Steinkellner H., Burg K., Favre J.M., Glössl J. and Kremer A. (1998). A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatelliteisozyme and 5S rDNA markers. Theor. Appl. Genet. 97: 1090–1103

    Article  CAS  Google Scholar 

  • Cipriani G., Lot G., Huang W.G., Marrazzo M.T., Peterlunger E. and Testolin R. (1999). Theor. Appl. Genet. 99: 65–72

    Article  CAS  Google Scholar 

  • Crawford D.J. (1990). Plant Molecular Systematics: Macromolecular Approaches. Wiley, New York, USA

    Google Scholar 

  • Crow J.F. and Aoki K. (1984). Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl. Acad. Sci. USA 81: 6073–6077

    Article  PubMed  CAS  Google Scholar 

  • Doyle J.J. and Doyle J.L. (1990). Isolation of plant DNA from fresh tissue. BRL Focus 12: 13–15

    Google Scholar 

  • Francis C.Y. and Yang R.C. 1993. Popgene version 1.31. http//www.ualberta.ca/∼fyeh/index.htm.

  • Ge S. (1994). Electrophoretic data and studies of plant systematics and evolution. J. Wuhan Bot. Res. 12: 71–84

    Google Scholar 

  • Gómez A., González-Martínez S.C., Collada C., Climent J. and Gil L. (2003). Complex population genetic structure in the endemic Canary Island pine revealed using chloroplast microsatellite markers. Theor. Appl. Genet. 107: 1123–1131

    Article  PubMed  Google Scholar 

  • Grant V. (1991). The Evolutionary Process: A Critical Study of Evolutionary Theory. Columbia University Press, New York, USA

    Google Scholar 

  • Hamrick J.L. (1987). Gene flow distribution of genetic variation in plant populations. In: Urbanska, K. (eds) Differentiation Patterns in Higher Plants, pp 53–57. Academic Press, New York, USA

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. (1990). Allozyme diversity in plant species. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L. and Weir, B.S. (eds) Plant Population Genetics, Breeding, and Genetic Resources, pp 43–63. Sinauer Assoc, Sunderland, Mass

    Google Scholar 

  • Hormaza J.I. (2002a). Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor. Appl. Genet. 104: 321–328

    Article  CAS  Google Scholar 

  • Hormaza J.I. (2002b). Identification of apricot (Prunus armeniaca L.) genotypes using microsatellite and RAPD markers. Acta Hort. 546: 209–215

    Google Scholar 

  • Lamboy W.F. and Alpha C.G. (1998). The utility of simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species. J. Am. Hort. Sci. 123: 182–188

    CAS  Google Scholar 

  • Layne R.E.C., Bailey C.H. and Hough L.F. (1996). Apricot. In: Janick, J. and Moore, J.N. (eds) Fruit Breeding, Vol. 1. Tree and Tropical Fruits, pp 79–111. John Wiley and Sons, New York, USA

    Google Scholar 

  • Li H.S. and Chen G.Z. (2004). Genetic diversity of Sonneratia alba in China detected by inter-simple sequence repeats (ISSR) analysis. Acta Bot. Sin. 46: 515–521

    CAS  Google Scholar 

  • Lin P.J. and Cui N.R. (2003). Wild Fruit Forests Resources in Tianshan Mountains: Comprehensive Research on Wild Fruit Forests in Ily, Xinjiang, China. China Forestry Publishing House, Beijing, China

    Google Scholar 

  • Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220

    PubMed  CAS  Google Scholar 

  • Millar C.I. and Westfall R.D. (1992). Allozyme markers in forest genetic conservation. New Forests 6: 347–371

    Article  Google Scholar 

  • Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    PubMed  Google Scholar 

  • Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingley S. and Rafalski A. (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238

    Article  CAS  Google Scholar 

  • Romero C., Pedryc A., Muñoz V., Llácer G. and Badenes M.L. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome 46: 244–252

    Article  PubMed  CAS  Google Scholar 

  • Rostova N.S. and Sokolova E.A. (1992). Variability of anatomical and morphological leaf characters in apricot (Armeniaca Scop.) species and varieties. Bull. Appl. Bot. Gente. Plant Breed. 146: 74–86

    Google Scholar 

  • Sánchez-Pérez R., Ruiz D., Dicenta F., Egea J. and Martínez-Gómez P. (2004). Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Sci. Hort. 103: 131–444

    Article  CAS  Google Scholar 

  • Schneider S., Roessli D. and Excoffier L. (2001). ARLEQUIN Version 2001: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Swizerland

    Google Scholar 

  • Shannon C.E. and Weaver W. (1949). The Mathematical Theory of Communication. University of Illinois Press, Urbana

    Google Scholar 

  • Slatkin M. and Barton N.H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368

    Article  Google Scholar 

  • Sosinski B., Gannavarapu M., Hager L.D., Beck L.E., King G. J., Ryder C.D., Rajapakse S., Baird W.V., Ballard R.E. and Abbott A.G. (2000). Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 101: 421–428

    Article  CAS  Google Scholar 

  • Spiegel S., Kovalenko E.M., Varga A. and James D. (2004). Detection and partial molecular characterization of two plum pox virus isolates from plum and wild apricot in southeast Kazakhstan. Plant Dis. 88: 973–979

    CAS  Google Scholar 

  • Testolin R., Marrazzo T., Cipriani G., Quarta R., Verde I., Dettori M.T., Pancaldi M. and Sansavini S. (2000). Microsatellite DNA in peach [Prunus persica (L.) Batsch] and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43: 512–520

    Article  PubMed  CAS  Google Scholar 

  • Vavilov N.I. (1951). Phytogeographical basis of plant breeding. Chron. Bot. 13: 13–54

    Google Scholar 

  • Vendramin G.G., Anzidei M., Madaghiele A. and Bucci G. (1998). Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellite. Theor. Appl. Genet. 97: 456–463

    Article  CAS  Google Scholar 

  • Wang Y.H., Luo J.X., Xue X.M., Helena K. and Li C.Y. (2005). Diversity of microsatellite markers in the populations of Picea asperata originating from the Mountains of China. Plant Science 168: 707–714

    Article  CAS  Google Scholar 

  • Wright S. (1978). Evolution and the Genetics of Populations, Vol. 4. Variability within and Among Natural Populations. University of Chicago Press, Chicago, USA

    Google Scholar 

  • Xu L.A., Li X.J., Pan H.X., Zou H.Y., Yin D.M. and Huang M.R. (2001). Study of population genetic structure in Castanopsis fargesii with microsatelite markers. Acta Bot. Sin. 43: 409–412

    CAS  Google Scholar 

  • Zhebentyayeva T.N., Reighard G.L., Gorina V.M. and Abbott A.G. (2003). Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106: 435–444

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Xue-Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian-Ming, H., Xue-Sen, C., Zheng, X. et al. Using SSR markers to determine the population genetic structure of wild apricot (Prunus armeniaca L.) in the Ily Valley of West China. Genet Resour Crop Evol 54, 563–572 (2007). https://doi.org/10.1007/s10722-006-0013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-0013-5

Key words