Skip to main content
Log in

Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): Analysis of genetic diversity and differentiation

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity was investigated in 73 accessions of emmer wheat (Triticum dicoccon Schrank) from 11 geographical regions using a set of 29 simple-sequence repeat (SSR or microsatellite) markers, representing at least two markers for each chromosome. The SSR primers amplified a total of 357 different alleles with an average of 12.31 alleles per locus. The number of fragments detected by each primer ranged between 6 (Xgwm1066) and 21 (Xgwm268). Null alleles were detected in nine of the 29 primers used. A high level of gene diversity index was observed. Across the 29 primers, gene diversity ranged from 0.60 (Xgwm46) to 0.94 (Xgwm655), with a mean of 0.82. There was a highly significant correlation (r=0.882; p<0.01) between gene diversity index and the number of loci, showing the number of loci per se is a strong indicator of diversity. Analysis of genetic diversity within and among eleven geographical regions revealed most of the genetic diversity of the total sample resided within regions. The coefficient of gene differentiation (Gst = 0.27) showed that the genetic variation within and among the 11 geographical regions was 73 and 27%, respectively. High value of mean number of alleles per locus was found in Iran (4.86) followed by Morocco (4.10) and Armenia (4.03). On the contrary, lower mean number of alleles per locus was detected in Yemen (2.83). The average gene diversity index across regions ranged from 0.52 (Slovakia) to 0.67 (Morocco) with an average of 0.60. Multivariate techniques of principal component analysis and clustering were employed to examine genetic relationship among the 73 emmer wheat accessions vis-à-vis geographical regions of collections. The genetic distance coefficients for all possible 55 pairs of regional comparisons ranged from 0.63 (between Iran and Armenia, Georgia and Azerbaijan, Georgia and Slovakia) to 0.97 (between Morocco and Yemen, Spain and Georgia, and Turkey and Iran) with a mean of 0.82. From the PCA results, a two dimensional plot of PC1 versus PC2 was constructed. The scatter plot of the first two principal components which explained altogether 27% of the total variation depicted the presence of a clear pattern of geographical differentiation except in few cases like accessions from Caucasian region. Similar pattern of genetic relationships among accessions was observed in cluster analysis. The study provided genetic information of emmer wheat in relation to geographical regions of origin. The information could be utilized in crop improvement, germplasm conservation programs, and in further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auricchio S., Occorsio P. and Silano V. (1982). Effects of gliadin-derived peptides from bread and durum wheat on small-intestine culture from rat fetus and celiac children. Pediatr. Res. 16: 1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Barcaccia G., Molinari L., Porfiri O. and Veronesi F. (2002). Molecular characterization of emmer (Triticum dicoccon Schrank) Italian landraces. Genet. Resour. Crop Evol. 49: 415–426

    Article  Google Scholar 

  • Bertin P., Gregoire D., Massart S. and de Froidmont D. (2001). Genetic diversity among European cultivated spelt revealed by microsatellites. Theor. Appl. Genet. 102: 148–156

    Article  CAS  Google Scholar 

  • Bretting P.K. and Widrlechner M.P. (1995). Genetic markers and plant genetic resources. Plant Breed. Rev. 13: 11–86

    Google Scholar 

  • Cavalli-Sforza L.L., Menozzi P. and Piazza P. (1994). History and Geography of Human Genes. Princeton University Press, Princeton, NY

    Google Scholar 

  • Chowdhury M.A. and Slinkard A.E. (2000). Genetic diversity in grasspea (Lathyrus sativus L.). Genet. Resour. Crop Evol. 47: 163–169

    Article  Google Scholar 

  • Corazza L., Pasquini M. and Perrino P. (1986). Resistance to rusts and powdery mildew in some strains of Triticum monococcum L. and Triticum dicoccum Schubler cultivated in Italy. Genet. Agrar. 40: 243–254

    Google Scholar 

  • D’Antuono L.F. (1989). I1 farro; areali di coltivazionecaratteristiche agronomicheutilizzazione e prospettive colturali. L’Informatore Agrario 45: 49–57

    Google Scholar 

  • Dai X. and Zhang Q. (1989). Genetic diversity of six isozyme loci in cultivated barley of Tibet. Theor. Appl. Genet. 78: 281–286

    Article  Google Scholar 

  • Damania A.B., Hakim S. and Moualla M.Y. (1992). Evaluation of variation in Triticum dicoccum for wheat improvement in stress environments. Hereditas 116: 163–166

    Google Scholar 

  • Devos K.M., Bryan G.J., Collins A.J. and Gale M.D. (1995). Application of two microsatellite sequences in wheat storage proteins as molecular markers. Theor. Appl. Genet. 90: 247–252

    Article  CAS  Google Scholar 

  • Dice L.R. (1945). Measures of the amount of ecologic association between species. Ecology 26: 297–302

    Article  Google Scholar 

  • Donini P., Stephenson P., Bryan G.J. and Koebner R.M.D. (1998). The potential of microsatellites for high throughput genetic diversity assessment in wheat and barley. Genet. Resour. Crop Evol. 45: 415–421

    Article  Google Scholar 

  • Dorofeev V.F., Filatenko A.A., Migušova E.F., Udain R.A. and Jakubciner M.M. 1979. Pšenica. Kul’turnaja Flora SSSR, Vol. 1. Leningrad, Russia, 347 pp.

  • Dvorak J., Luo M.C., Yang Z.L. and Zhang H.B. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657–670

    Article  CAS  Google Scholar 

  • Eujayl I., Sorrells M., Baum M., Wolters P. and Powell W. (2001). Assessment of genotypic variation among cultivated durum wheat based on EST-SSRS and genomic SSRS. Euphytica 119: 39–43

    Article  CAS  Google Scholar 

  • Fahima T., Röder M.S., Grama A. and Nevo E. (1998). Microsatellite DNA polymorphism divergence in Triticum dicoccoides accessions highly resistant to yellow rust. Theor. Appl. Genet. 96: 187–195

    Article  CAS  Google Scholar 

  • Fahima T., Röder M.S., Wendehake K., Kirzhner V.M. and Nevo E. (2002). Microsatellite polymorphism in natural populations of wild emmer wheatTriticum dicoccoides in Israel. Theor. Appl. Genet. 104: 17–29

    Article  PubMed  CAS  Google Scholar 

  • Feldman M. (1979). Wheats (Triticum spp.). In: Simmonds, N.W. (eds) Evolution of Crop Plants, pp. Longman Group Limited, London

    Google Scholar 

  • Figliuolo G. and Perrino P. (2004). Genetic diversity and intra-specific phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. revealed by RFLPs and SSRs. Genet. Resour. Crop Evol. 51: 519–527

    Article  CAS  Google Scholar 

  • Filatenko A.A., Grau M., Knüpffer H. and Hammer K. (2001). Wheat Classification – John Percival's contribution and the approach of the Russian School. The Linnean Society of London, Special Issue No. 3: 165–184

    Google Scholar 

  • Fulton T.M., Chunwongse J. and Tanksley D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13: 207–209

    CAS  Google Scholar 

  • Gökgöl M. (1955). Bugdaylarin Tansif Anahtari. Ziraat Vekaleti Yayin. No. 76, Istambul; Turkey

    Google Scholar 

  • Hammer K. and Perrino P. (1984). Further information on farro (Triticum monococcum L. and Triticum dicoccon Schrank) in South Italy. Kulturpflanze 32: 143–151

    Article  Google Scholar 

  • Hammer K., Filatenko A.A., Al-Khanjari S., Al-Maskri A.Y. and Buerkert A. (2004). Emmer (Triticum dicoccon Schrank) in Oman. Genet. Resour. Crop Evol. 51: 111–113

    Article  Google Scholar 

  • Harlan J.R. (1955). The great plains region (Part 4). Agric. Food Chem. 3: 29–31

    Google Scholar 

  • Harlan J.R. (1971). Agricultural origins: centers and noncenters. Science 174: 468–474

    Article  CAS  PubMed  Google Scholar 

  • Harlan J.R. and Zohary D. (1966). Distribution of wild wheats and barley. Science 153: 1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Helbaeck H. (1959). Domestication of food plants in the old world. Science 130: 365–372

    Article  Google Scholar 

  • Huang X.Q., Börner A., Röder M.S. and Ganal M.W. (2002). Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105: 699–707

    Article  PubMed  CAS  Google Scholar 

  • Koenig R. and Gepts P. (1989). Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theor. Appl. Genet. 78: 809–817

    Article  Google Scholar 

  • Kresovich S., Williams J.G.K., McFerson J.R., Routman E.J. and Schaal B.A. (1992). Characterization of genetic identities and relationships of Brassica oleracea L. via a random amplified polymorphic DNA assay. Theor. Appl. Genet. 85: 190–196

    Article  CAS  Google Scholar 

  • Krivchenko V.I., Yamaleyev A.M., Isayev R.F. and Gorbunova V.Y. (1979). Role of wheat seed huskiness in bunt resistance. Mycol. Phytopathol. 13(4): 330–333

    Google Scholar 

  • Laghetti G., Piergiovanni A.R., Volpe N. and Perrino P. (1999). Agronomic performance of Triticum dicoccon Schrank and T. spelta L. accessions under Southern Italian conditions. Agr. Med. 129: 199–211

    Google Scholar 

  • Nei M. (1973). Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323

    Article  PubMed  CAS  Google Scholar 

  • Nei M. and Chesser R.K. (1983). Estimation of fixation and gene diversities. Ann. Hum. Genet. 47: 253–259

    PubMed  CAS  Google Scholar 

  • Nei M. and Li W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt M. and Samuel D. (1996). From staple crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi, S., Hammer, K. and Heller, J. (eds) Hulled Wheats, pp. IPGRI, Rome

    Google Scholar 

  • Peña-Chocarro L. 1996. In situ conservation of hulled wheat species: the case of Spain. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled Wheats. Promoting the conservation and use of underutilized and neglected crops. Proc. of 1st Int. Workshop on Hulled Wheats, July, 21–22, 1995. Castelvecchio Pascoli, Lucca, Italy, pp. 129–146.

  • Perrino P., Laghetti G., D’Antuono L.F., Al Ajlouni M., Kanbertay M., Szabó A.T. and Hammer K. 1996. Ecogeographical distribution of hulled wheat species. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled wheats. Proc. Int. Workshop. Castelvecchio PascoliItaly, pp. 101–119.

  • Pflüger L.A., Martín L.M. and Alvarez J.B. (2001). Variation in the HMW and LMW glutenin subunits from Spanish accessions of emmer wheat (Triticum turgidum ssp. dicoccum Schrank). Theor. Appl. Genet. 102: 767–772

    Article  Google Scholar 

  • Piergiovanni A.R. and Blanco A. (1999). Variation of HMW glutenin and γ-gliadin subunits in selected accessions of Triticum dicoccum (Schrank) and T. spelta (L.). Cereal Res. Commun. 27: 205–211

    CAS  Google Scholar 

  • Plaschke J., Ganal M.W. and Röder M.S. (1995). Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 91: 1001–1007

    Article  CAS  Google Scholar 

  • Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P. and Ganal M.W. (1998). A microsatellite map of wheat. Genetics 149: 2007–2023

    PubMed  Google Scholar 

  • Röder M.S., Wendehake K., Korzun V., Bredemeijer G., Loborie D., Bertranel L., Isaac P., Rendell S., Jackson J., Cooke R.J., Vosman B. and Ganal M.W. (2002). Construction and analysis of a microsatellite-based database of European wheat varieties. Theor. Appl. Genet.: 163–169

  • Rohlf F.J. 1998. NTSYS-pc: numerical taxonomy and multivariate analysis systemvers. 2.0. Applied Biostatistics Inc., New York.

  • Serret M.D., Udupa S.M. and Weigand F. (1997). Assessment of genetic diversity of cultivated chickpea using microsatellite-derived RFLP markers: implications for origin. Plant Breed. 116(6): 573–578

    Article  CAS  Google Scholar 

  • Sharma H.C., Waines J.C. and Foster K.W. (1981). Variability in primitive and wild wheats for useful genetic characters. Crop Sci. 21: 555–559

    Article  CAS  Google Scholar 

  • Srivastava J.P. and Damania A.B. (1989). Use of collections for cereal improvement in semi-arid areas. In: Brown, A.H.D., Frankel, O.H., Marshall, D.R. and Williams, J.T. (eds) The Use of Plant Genetic Resources, pp 88–104. Cambridge University Press, UK

    Google Scholar 

  • Stallknecht G.F., Gilbertson K.M. and Romey J.E. (1997). Alternative wheat cereals as good grains: Einkorn, emmerspeltkamutand triticale. In: Janick, J. (eds) Progress in New Crops, pp 156–170. ASHS Press, Alexandria VA

    Google Scholar 

  • Szabó A.T. and Hammer K. 1996. Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In: Padulosi S., Hammer K. and Heller J.(eds) Hulled Wheats. Promoting the Conservation and Use of Underutilized and Neglected Crops. Proc. of 1st Int. Workshop on Hulled Wheats, July, 21–22, 1995, Castelvecchio PascoliLuccaItaly, pp. 2–40.

  • Tautz D. and Renz M. (1984). Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucl. Acids Res. 23: 249–255

    Google Scholar 

  • Teklu Y. and Hammer K. 2006. Farmers perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet. Resour. Crop Evol. (in press).

  • Teklu Y., Hammer K., Huang X.Q. and Röder M.S. 2006. Analysis of microsatellite diversity in Ethiopian tetraploid wheats. Genet. Resour. Crop Evol. (in press).

  • Vavilov N.I. (1931). The Linnaean species as a system. Tr. po Prikl. Bot. Genet. Sel. [Bull. Appl. Bot. Genet. Sel.] 26(3): 109–134

    Google Scholar 

  • Vavilov N.I. 1964. World resources of cereals, legumes, flax cultivars and their utilization in breeding. Wheat. Nauka, Moskow and Leningrad.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifru Teklu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teklu, Y., Hammer, K. & Röder, M.S. Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): Analysis of genetic diversity and differentiation. Genet Resour Crop Evol 54, 543–554 (2007). https://doi.org/10.1007/s10722-006-0011-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-006-0011-7

Key words

Navigation