Genetic and Phenotypic Diversity in Downy-mildew-resistant Sorghum (Sorghum bicolor (L.) Moench) Germplasm

Abstract

Genetic and phenotypic diversity among randomly selected 36 downy-mildew-resistant sorghum accessions were assessed, the former using 10 simple sequence repeat (SSR) marker loci and the latter using 20 phenotypic traits. The number of alleles (a j ) at individual loci varied from five to 14 with an average of 8.8 alleles per locus. Nei's gene diversity (H j ) varied from 0.59 to 0.92 with an average of 0.81 per locus. High gene diversity and allelic richness were observed in races durra caudatum (H j  = 0.76, a j  = 4.3) and guinea caudatum (H j  = 0.76, a j  = 3.8) and in east Africa (H j  = 0.78, a j  = 7.2). The regions were genetically more differentiated than the races as indicated by Wright's F st. The pattern of SSR-based clustering of accessions was more in accordance with their geographic proximity than with their racial likeness. This clustering pattern matched little with that obtained from phenotypic traits. The inter-accession genetic distance varied from 0.30 to 1.00 with an average of 0.78. Inter-accession phenotypic distance varied from 0.01 to 0.55 with an average of 0.33. Eleven accession-pairs had phenotypic distance of more than 0.50 and genetic distance of more than 0.70. These could be used as potential parents in a sorghum downy mildew resistance-breeding program.

This is a preview of subscription content, access via your institution.

References

  1. R.W. Allard, Predictive methods for germplasm identification. In: H.T. Stalker and J.P. Murphy (eds.) Plant Breeding in the 1990s. UK: CAB International (1992) pp. 119-146

    Google Scholar 

  2. S. Audilakshmi, J.W. Stenhouse, T.P. Reddy and M.V.R. Prasad, Grain mould resistance and associated characters of sorghum genotypes. Euphytica 107 (1999) 91-103

    Article  Google Scholar 

  3. A.M. Bowcock, A. Ruiz-Linares, J. Tomfohrde, E. Minch, J.R. Kidd and L.L. Cavalli-Sforza, High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368 (1994) 455-457

    PubMed  CAS  Article  Google Scholar 

  4. S.M. Brown, M.S. Hopkins, S.E. Mitchell, M.L. Senior, T.Y. Wang, R.R. Duncan, F. Gonzales-Candelas and S. Kresovich, Multiple methods for identification of polymorphic simple sequence repeats (SSRs) in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 93 (1996) 190-198

    CAS  Article  Google Scholar 

  5. Crow J.F. and Kimura M. 1970. An Introduction to Population Genetics Theory. N.Y. Harper and Row.

  6. R.E. Dean, J.A. Dahlberg and M.S. Hopkins, Genetic redundancy and diversity among ȁ8Orangeȁ9 accessions in the US National Sorghum collection as assessed with simple sequence repeat (SSR) markers. Crop. Sci. 39 (1999) 1215-1221

    Article  Google Scholar 

  7. C. De Oliveira Antonio, Todd Richter and L. Bennetzen Jefferey, Regional and racial specificities in sorghum germplasm assessed with DNA markers. Genome 39 (1996) 579-587

    Google Scholar 

  8. M. Deu, D. Gonzalles-de-Leon, J.C. Glaszmann, I. Degremont, J. Chantereau, C. Lanaud and P. Hamon, RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor. Appl. Genet. 88 (1994) 838-844

    CAS  Article  Google Scholar 

  9. Duncan R.R., Bramel-Cox P.J. and Miller F.R. 1991. Contributions of introduced sorghum germplasm to hybrid development in the USA. Crop Science Society of America – Use of Plant Introductions in Cultivar Development. Special Publ. Part 1. CSSA No. 17.

  10. J.C. Gower, A general coefficient of similarity and some of its properties. Biometrics 27 (1971) 857-871

    Article  Google Scholar 

  11. C. Grenier, M. Deu, S. Kresovich, P.J. Bramel-Cox and P. Hamon, Assessment of genetic diversity in three subsets constituted from the ICRISAT sorghum collection using random vs non-random sampling procedures B: using molecular markers. Theor. Appl. Genet. 101 (2000) 197-202

    CAS  Article  Google Scholar 

  12. L. Kong, J. Dong and G.E. Hart, Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor. Appl. Genet. 101 (2000) 438-448

    CAS  Article  Google Scholar 

  13. Marshall D.R. and Brown A.H.O. 1975. Optimum sampling strategies in genetic conservation. In: Frankel O.H. and Hawkes J.G.(eds) Crop Genetic Resources for Today and Tomorrow. Cambridge Univ. Press, Cambridge, UK, pp. 53–80

  14. Miller M.P. 1997. Tools for Population Genetic Analysis (TFPGA) 1.3: A Windows Programme for the Analysis of Allozyme and Molecular Population Genetic Data.

  15. W.C. Morden, J. Doebley and K.F. Schertz, Allozyme variation in old world races of Sorghum bicolor (Poaceae). Am. J. Bot. 76 (1989) 245-255

    Article  Google Scholar 

  16. M. Nei, Molecular Evolutionary Genetics. New York: Columbia University Press (1987).

    Google Scholar 

  17. M. Nei and W.H. Li, Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS (USA) 76 (1979) 5269-5273

    CAS  Article  Google Scholar 

  18. Pande S., Bock C.H., Bandyopadhyay R., Narayana Y.D., Reddy B.V.S., Lenne J.M. and Jeger M.J. 1997. Downy Mildew of Sorghum. Information Bulletin No. 51 Patancheru 502 324, A.P., India.

  19. Payne R.W.(eds) 2002. The guide to Gen, Stat Release 6.1. Part 2: Statistics.

  20. J.S. Rogers, Measures of genetic similarity and genetic distance. In: Studies in Genetic VII. Austin: University of Texas Publication no. 7213 (1972).

    Google Scholar 

  21. F.J. Rohlf, NTSYS-pc: Numerical Taxonomy and Multivariate Systemversion 2.1.1.. Setauket, New York: Exeter Software (1994).

    Google Scholar 

  22. D.J. Schoen and A.H.D. Brown, Conservation and allelic richness in wild crop relations in aided by assessment of genetic markers. PNAS 90 (1993) 10623-10627

    PubMed  CAS  Article  Google Scholar 

  23. S. Sivaramakrishnan, K. Seetha, A. Nageshwar Rao and Singh Laxman, RFLP analysis of cytoplasmic male-sterile lines of pigeon pea (Cajanus cajan (L.) Millsp.) developed by interspecific crosses. Euphytica 93 (1997) 307-312

    CAS  Article  Google Scholar 

  24. Snedecor G.W. and Cochran W.G. 1967. Statistical Methods. Oxford and IBH Publishing Co.

  25. D. Tautz, M. Trick and G.A. Dover, Cryptic simplicity in DNA is a major source of genetic variation. Nature 322 (1986) 652-656

    PubMed  CAS  Article  Google Scholar 

  26. B.S. Weir and C.C. Cockerham, Estimating F-statistics for the analysis of population structure. Evolution 38 (1984) 1358-1370

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Kamala.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamala, V., Bramel, P.J., Sivaramakrishnan, S. et al. Genetic and Phenotypic Diversity in Downy-mildew-resistant Sorghum (Sorghum bicolor (L.) Moench) Germplasm. Genet Resour Crop Evol 53, 1243–1253 (2006). https://doi.org/10.1007/s10722-005-5678-7

Download citation

Key words

  • Downy mildew
  • Genetic diversity
  • Microsatellite markers
  • Phenotypic diversity
  • Sorghum bicolor