Advertisement

Genetic Resources and Crop Evolution

, Volume 52, Issue 2, pp 201–207 | Cite as

Variation and heritability of seed mass in chia (Salvia hispanica L.)

  • J. P. Cahill
  • B. Ehdaie
Article

Abstract

Variation and heritability of seed mass in the Mesoamerican crop chia, Salvia hispanica L. was studied to examine the feasibility of selection for the trait. Genotypic variation in seed mass in wild/cultivated and domesticated accessions of chia from different origins was assessed. Broadsense heritability of seed mass was estimated using variances associated with parental and F2 generations derived from two crosses and from the response to one cycle of selection. Significant (P . 0.0001) genotypic variation was observed among accessions. Mean seed mass for domesticated accessions (14.84 mg/100 seeds) was greater than that of the wild accessions (11.29 mg/100 seeds) by 31%. The heritability of seed mass was relatively high in chia (0.75), suggesting that this trait is under strong genetic control. This conclusion was supported by a single selection cycle from the F2 to F3 generation that produced a 16% increase in mean seed mass. The realized heritability estimated based on this one cycle of selection also was 0.75. These observations indicate that gains from selection in chia seed mass are possible when mass selection is conducted in early generations. Basic information is thus provided for future breeding efforts in a species for which little or no knowledge of inheritance currently exists.

Keywords

Domesticated accessions Heritability Seed mass Salvia hispanica Selection Wild accessions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayerza, R. 1995Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in ArgentinaJ. Am. Oil Chem. Soc.7210791081Google Scholar
  2. Busch, R.H., Kofoid, K. 1982Recurrent selection for kernel weight in spring wheatCrop Sci.22568572CrossRefGoogle Scholar
  3. Bidinger, F.R., Raju, D.S. 2000Response to selection for increased individual grain mass in pearl milletCrop Sci.406871CrossRefGoogle Scholar
  4. Coates, W., Ayerza, R. 1996Production potential of chia in northwestern ArgentinaIndust. Crops Prod.5229233Google Scholar
  5. Estilai, A., Hashemi, A., Truman, K. 1990Chromosome number and meiotic behavior of cultivated chia, Salvia hispanica (Lamiaceae)HortScience2516461647Google Scholar
  6. Falconer, D.S., MacKay, T.F.C. 1996Introduction to Quantitative Genetics.4LongmanEssex, UKGoogle Scholar
  7. Haque, M.S., Ghoshal, K.K. 1981Floral biology and breeding system in the genus Salvia LProc. Indian Natl. Sci. Acad.47716724Google Scholar
  8. Harlan, J.R. 1992Crops and ManAmerican Society of AgronomyMadison,WI.Google Scholar
  9. Harvey, H.R. 1991Land Politics in the Valley of Mexico: A 2000 Year PerspectiveUniversity of New Mexico PressAlbuquerqueGoogle Scholar
  10. Hernandez Gomez, J.A. 1989Efecto de la fecha siembra, densidad de poblacion y competencia de malezas en el rendimiento de chia (Salvia hispanica L.). (Masters) Chapingo Colegio de PostgraduadosUniversidad AutonomaMexicoGoogle Scholar
  11. Hernandez Gomez J.A. 1994. In: Cuevas J. (ed.), Chia (Salvia hispanica) Antecedentes y Perspectivas en Mexico. Universidad Autonoma Chapingo, Mexico.Google Scholar
  12. Lin, K.Y., Daniel, J.R., Whistler, R.L. 1994Structure of chia seed polysaccharide exudatesCarbohydr. Polym.231318Google Scholar
  13. Rojas-Rabiela, T. 1988Las Siembras de Ayer, la Agricultura Indigena del Siglo XVISecretaria de Educacion PublicaMexico, DFGoogle Scholar
  14. Sahagun,Fray Bernardino de, 1950–1982. In: Anderson A.J.O. and Dibble C.E. (eds), Florentine Codex: General History of the Things of New Spain, vol. 14. Monographs of the School of American Research, Salt Lake City, University of Utah Press. (Originally written 1575–1577 or 1578–1580).Google Scholar
  15. Simmonds, N.W. 1981Principles of Crop ImprovementLongman Group Ltd.New YorkGoogle Scholar
  16. SPSS,2000. Sigma plot: exact graphics for exact science. SPSS Science, 2335 S. Wacker Drive, 11th floor, Chicago, Illinois, USA.Google Scholar
  17. Steel, R.G.D, Torrie, J.H. 1980Principles and Procedures of Statistics: A Biometrical Approach2McGraw-HillNew YorkGoogle Scholar
  18. Sokal, R.R., Rohlf, F.J. 1995Biometry: The Principles and Practice of Statistics in Biological Research.3W.H. FreemanNew YorkGoogle Scholar
  19. Ting, I.P., Ahmed, M., Scora, R.W., Brown, J.H., Arquette, J.D. 1996Terpene composition of chia and chan leaf tissue. Int Conf. on New Industrial Crops and Products.3University of ArizonaTucsonGoogle Scholar
  20. Turnbull, L.A., Rees, M., Crawley, M.J. 1999Seed mass and the competition/colonization trade-off: a sowing experimentJ. Ecol.87899912Google Scholar
  21. Weber, C.W., Gentry, H.S., Kohlhepp, E.A., McCrohan, P.R. 1991The nutritional and chemical evaluation of chia seeds.Ecol Food Nutr26119125CrossRefGoogle Scholar
  22. Yu, H.Kosuna, K.Haga M., . eds. 1997The Genus Perilla.Harwood Academic PublishersAmsterdam.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations