Skip to main content
Log in

Effect of Light on the Magnetic Properties of Semiconductors

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnar, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M., Spintronics: A Spin-Based Electronics Vision for the Future, Science (Washington, D.C., 1883-), 2001, vol. 294, pp. 1488–1495.

    Article  CAS  Google Scholar 

  2. Semiconductor Spintronics and Quantum Computation, Awschalom, D.D., Loss, D., and Samarth, N., Eds., Berlin: Springer-Verlag, 2002.

    Google Scholar 

  3. Ball, P., Meet the Spin Doctors, Nature (London), 2000, vol. 404, p. 918.

    Article  CAS  Google Scholar 

  4. Awschalom, D.D. and Kikkawa, J. M., Electron Spin and Optical Coherence in Semiconductors, Phys. Today, 1999, vol. 52, no.6, pp. 33–38.

    CAS  Google Scholar 

  5. Molnar, S. and Read, D., Magneto-Transport in Magnetic Compound Semiconductors and Metals, J. Magn. Magn. Mater., 2002, vols. 242–245, p. 13.

    Google Scholar 

  6. Pearton, S.J., Abernathy, C.R., and Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A., and Budai, J.D., Advances in Wide Band Gap Materials for Semiconductor Spintronics, Mater. Sci. Eng., 2003, vol. 40, p. 137.

    Google Scholar 

  7. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodorpoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J., and Boatner, L.A., Wide Band Gap Ferromagnetic Semiconductors and Oxides, J. Appl. Phys., 2003, vol. 93, p. 1.

    Article  CAS  Google Scholar 

  8. Baibich, M.N., Broto, J.M., Fert, A., Nguyen F. Van Dau, and Petroff, F., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett., 1988, vol. 61, p. 2472.

    Article  CAS  Google Scholar 

  9. Barnas, J., Fuss, A., Camley, R., Grunberg, P., and Zinn, W., Novel Magnetoresistance Effect in Layered Magnetic Structures: Theory and Experiment, Phys. Rev. B: Condens. Matter., 1990, vol. 42, p. 8110.

    CAS  Google Scholar 

  10. Datta, S., Das B. Electronic Analog of the Electro-Optic Modulator, Appl. Phys. Lett., 1990, vol. 56, p. 665.

    Article  CAS  Google Scholar 

  11. Burkard, G., Loss, D., and DiVincenzo, D.P., Coupled Quantum Dots on Quantum Gates, Phys. Rev. B: Condens. Matter., 1999, vol. 59, p. 2070.

    CAS  Google Scholar 

  12. Semiconductors and Semimetals, vol. 25 of Dilute Magnetic Semiconductors, Furdyna, J.K. and Kossut, J., Eds., Boston: Academic, 1988.

    Google Scholar 

  13. Furdyna, J.K., Diluted Magnetic Semiconductors, J.Appl. Phys., 1988, vol. 64, p. 29.

    Article  Google Scholar 

  14. Munekata, H., Ohno, H., Von Molnar, S., Segmuller, A., and Chang, L.L., and Esaki, L., Diluted Magnetic III–V Semiconductors, Phys. Rev. Lett., 1989, vol. 63, p. 1849.

    Article  CAS  Google Scholar 

  15. Ohno, H., Shen, A., Matsukura, F., Oiwa, A., Endo, A., and Iye Y., (Ga,Mn)As: A New Diluted Magnetic Semiconductor Based on GaAs, Appl. Phys. Lett., 1996, vol. 69, p. 363.

    CAS  Google Scholar 

  16. Ohno, H., Making Nonmagnetic Semiconductors Ferromagnetic, Science (Washington, D.C., 1883-), 1988, vol. 281, p. 951.

    Google Scholar 

  17. Ohno, Y., Young, D.K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D.D., Electrical Spin Injection in a Ferromagnetic Semiconductor Heterostructure, Nature (London), 1999, vol. 402, p. 790.

    CAS  Google Scholar 

  18. Beschoten, B., Crowell, P.A., Malajovich, I., Awschalom, D.D., Matsukura, F., Shen, A., and Ohno, H., Magnetic Circular Dichroism Studies of Carrier-Induced Ferromagnetism in (Ga1 − x Mn x )As, Phys. Rev. Lett., 1999, vol. 83, p. 3073.

    Article  CAS  Google Scholar 

  19. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno Y., and Ohtani, K., Electric-Field Control of Ferromagnetism, Nature (London), 2000, vol. 408.

  20. Das Sarma, S., Hwang, E.H., and Kaminski, A., How to Make Semiconductors Ferromagnetic: A First Course on Spintronics, Solid State Commun., 2003, vol. 127, p. 99.

    Google Scholar 

  21. Nagaev, E.L., Fizika magnitnykh poluprovodnikov (Physics of Magnetic Semiconductors), Moscow: Nauka, 1979.

    Google Scholar 

  22. Nagaev, E.L., Self-Localization of Carriers in Magnetic Semiconductors, Zh. Eksp. Teor. Fiz., 1968, vol. 54, pp. 228–235.

    CAS  Google Scholar 

  23. Rho, H., Snow, C.S., Cooper, S.L., Fisk, Z., Comment, A., and Ansermet, J.-Ph., Evolution of Magnetic Polarons and Spin-Carrier Interactions through the Metal-Insulator Transition in Eu1 − x Gd x O, Phys. Rev. Lett., 2002, vol. 88, no.12, p. 127401.

    Article  CAS  Google Scholar 

  24. Torrance, J.B., Shafer, M.W., and McGuire, T.R., Bound Magnetic Polarons and the Insulator-Metal Transition in EuO, Phys. Rev. Lett., 1972, vol. 29, p. 1168.

    Article  CAS  Google Scholar 

  25. Snow, C.S., Cooper, S.L., Young, D.P., Fisk, Z., Comment, A., and Ansermet, J.-P., Magnetic Polarons and the Metal-Semiconductor Transitions in (Eu,La)B6 and EuO: Raman Scattering Studies, Phys. Rev. B: Condens. Matter., 2001, vol. 64, p. 174 412.

    Google Scholar 

  26. Dietl, T., Spin Order Manipulations in Nanostructures of II–VI Ferromagnetic Semiconductors, J. Magn. Magn. Mater., 2004, vols. 272–276, p. 1969.

    Google Scholar 

  27. Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., and Merle d'Aubigne, Y., Observation of a Ferromagnetic Transition Induced by Two-Dimensional Hole Gas in Modulation-Doped CdMnTe Quantum Wells, Phys. Rev. Lett., 1997, vol. 79, p. 511.

    Article  CAS  Google Scholar 

  28. Boukari, H., Kossacki, P., Bertolini, M., Ferrand, D., Cibert, J., Tatarenko, S., Wasiela, A., Gaj, J.A., and Dietl, T., Light and Electric Field Control of Ferromagnetism in Magnetic Quantum Structures, Phys. Rev. Lett., 2002, vol. 88.

  29. Kimura, S., Sato, Y., Suzuki, T., and Ikezawa, M., Deep Magnetic Polaron State in Gd2S3, Physica B (Amsterdam), 1995, vols. 206–207, pp. 786–788.

    Google Scholar 

  30. Kasuya, T., Mechanism of Anomalies in High T C CuO2 Systems through Magnetic Polaron Condensation, Physica A (Amsterdam), 1999, vol. 312, pp. 239–246.

    CAS  Google Scholar 

  31. Bednorz, J.G. and Muller, K.A., Possible High T Superconductivity in the Ba-La-Cu-O System, Z. Phys. B: Condens. Matter, 1986, vol. 64, p. 189.

    Article  CAS  Google Scholar 

  32. Kasuya, T., Bose Condensation and High-T C Superconductivity in La2 − x Sr x CuO4, Physica C (Amsterdam), 1994, vol. 223, p. 233.

    Article  CAS  Google Scholar 

  33. Kasuya, T., Double Layer Effect on Superconductivity in YBa2Cu3O6 + x , Physica C (Amsterdam), 1994, vol. 224, p. 191.

    Article  CAS  Google Scholar 

  34. Kasuya, T., Physics in Low Carrier Strongly Correlated Systems: Kondo Insulator Magnetic Polaron and High T C, Physica B (Amsterdam), 1995, vol. 215, p. 88.

    Article  CAS  Google Scholar 

  35. Keimer, B., Belk, N., Birgeneau, R.J., Cassanho, A., Chen, C.Y., Greven, M., and Kastner, M.A., Magnetic Excitations in Pure, Lightly Doped, and Weakly Metallic La2CuO4, Phys. Rev. B: Condens. Matter., 1992, vol. 46, p. 14 034.

    CAS  Google Scholar 

  36. Kasuya, T., Condensation of Magnetic Polarons, J.Phys. Soc. Jpn. Suppl. B, 1996, vol. 65, pp. 78–82.

    Google Scholar 

  37. Kohgi, M., Osakabe, T., Kakurai, K., Suzuki, T., Haga, Y., and Kasuya, T., Evidence for a Magnetic-Polaron State in the Low-Carrier System CeP, Phys. Rev. B: Condens. Matter., 1994, vol. 49, pp. 7068–7073.

    CAS  Google Scholar 

  38. Tranquada, J.M., Sternlieb, B.J., Axe, J.D., Nakamura, Y., and Uchida, S., Evidence for Stripe Correlations of Spins and Holes in Copper Oxide Superconductors, Nature (London), 1995, vol. 375, pp. 561–563.

    Article  Google Scholar 

  39. Norman, M.R., Ding, H., Randeria, M., Campuzano, J.C., Yokoya, T., Takeuchi, T., Takahashi, T., Mochiku, T., Kadowaki, K., Guptasarma, P., and Hinks, D.G., Destruction of the Fermi Surface in Underdoped High-T/Sub C/Superconductors, Nature (London), 1998, vol. 392.

  40. Sato, K., Dederichs, P.H., Katayama-Yoshida, H., and Kudrnovsky, J., Magnetic Impurities and Materials Design for Semiconductor Spintronics, Physica B (Amsterdam), vols. 340–342, pp. 863–869.

  41. Matsukura, F., Ohno, H., Shen, A., and Sugawara, Y., Transport Properties and Origin of Ferromagnetism in (Ga, Mn)As, Phys. Rev. B: Condens. Matter., 1998, vol. 57, p. 2037.

    Google Scholar 

  42. Bertolini, M., Maslana, W., Boukari, H., Gilles, B., Cibert, J., Ferrand, D., Tatarenko, S., Kossacki, P., and Gaj, J.A., New Structures for Carrier-Controlled Ferromagnetism in Cd1 − x Mn x Te Quantum Wells, J. Cryst. Growth, 2003, vol. 251, pp. 342–346.

    Article  CAS  Google Scholar 

  43. Boukari, H., Bertolini, M., Cibert, J., Ferrand, D., Genuist, Y., Tatarenko, S., Kossacki, S., Gaj, J.A., and Dietl, T., Light and Electric Field Control of Ferromagnetism in CdMnTe Based Quantum Wells, Phys. Status Solidi, 2002, vol. 229, p. 737.

    Article  CAS  Google Scholar 

  44. Boukari, H., Kossacki, P., Bertolini, M., Ferrand, D., Cibert, J., Tatarenko, S., Wasiela, A., Gaj, J.A., and Dietl, T., Light and Electric Field Control of Ferromagnetism in Magnetic Quantum Structures, Phys. Rev. Lett., 2002, vol. 88.

  45. Matsukura, F., Chiba, D., Omiya T., Abe, E., Dietl, T., Ohno, Y., Ohtani, K., and Ohno, H., Control of Ferromagnetism in Field-Effect Transistor of a Magnetic Semiconductor, Physica E (Amsterdam), 2002, vol. 12, pp. 351–355.

    Article  CAS  Google Scholar 

  46. Wolff, P.A., Semiconductors and Semimetals, Diluted Magnetic Semiconductors, New York: Academic, 1988, vol. 25, p. 413.

    Google Scholar 

  47. Benoit a la Guillaume, C., Semenov, Y., and Combescot, M., Free Magnetic Polaron: A Nonlinear Hamiltonian Approach, Phys. Rev. B: Condens. Matter., 1995, vol. 51, p. 14124.

    CAS  Google Scholar 

  48. Takeyama, S., Adachi, S., Takagi, Y., Karczewski, G., Wojtowicz, T., Kossut J., and Karasawa, T., Photo-Induced Magnetic Polarons in Low-Dimensional Dilute Magnetic Semiconductors, Mater. Sci. Eng., B., 1999, vol. 63, pp. 111–118.

    Article  Google Scholar 

  49. Yakovlev, D.R., Uraltsev, I.N., Ossau, W., Landwehr, G., Bicknell-Tassius, R.N., Waag, A., and Schmeusser, S., Two-Dimensional Exciton Magnetic Polaron in Semimagnetic Quantum Wells, Surf. Sci., 1992, vol. 263, p. 485.

    Article  CAS  Google Scholar 

  50. Stirner, T., Harrison, P., Hagston, W.E., and Goodwin, J.P., Theoretical Investigation of Observed Magnetic-Polaron Energies in Quantum Wells, Phys. Rev. B: Condens. Matter., 1994, vol. 50, p. 5713.

    CAS  Google Scholar 

  51. Kavokin, A.V. and Kavokin, K.V., Theory of Two-Dimensional Magnetic Polarons in an External Magnetic Field, Semicond. Sci. Technol., 1993, vol. 8, p. 191.

    Article  CAS  Google Scholar 

  52. Karpenko, B.V. and Berdyshev, A.A., Exchange Interaction via Current Carriers in Ordered Semiconducting Magnets, Sov. Phys. Solid State, 1964, vol. 5, p. 2494.

    Google Scholar 

  53. Nagaev, E.L., Ferromagnetic and Antiferromagnetic Semiconductors, Sov. Phys. Usp, 1975, vol. 18, pp. 863–919.

    Google Scholar 

  54. Afanas'ev, M.M., Kompman, M.E., and Merkulov, I.A., Pis'ma Zh. Tekh. Fiz., 1976, vol. 2, pp. 228–233.

    Google Scholar 

  55. Lakhno, V.D. and Nagaev, E.L., Nondissipative Photoferromagnetism in Magnetic Semiconductors, Z. Eksp. Teor. Fiz, 1978, vol. 74, pp. 2123–2130.

    CAS  Google Scholar 

  56. Gopalan, S. and Cottam, M.G., Theory of Surface and Bulk Excitations in Ferromagnetic Semiconductors, Phys. Rev. B: Condens. Matter., 1990, vol. 42, pp. 10 311–10 316.

    Google Scholar 

  57. Haas, C., Ferromagnetic Properties of Spinels, Crit. Rev. Solid State Sci., 1970, vol. 1, pp. 47–78.

    Article  CAS  Google Scholar 

  58. Suski T., Igalson, J., and Story, T., Ferromagnetism of (Pb,Sn,Mn)Te under High Pressure, J. Magn. Magn. Mater., 1987, vol. 66, p. 325.

    Article  CAS  Google Scholar 

  59. Haury, A., Wasiela, A., Arnoult, A., Cibert, J., Tatarenko, S., Dietl, T., and Merle d'Aubigne, Y., Observation of a Ferromagnetic Transition Induced by Two-Dimensional Hole Gas in Modulation-Doped CdMnTe Quantum Wells, Phys. Rev. Lett., 1997, vol. 79, p. 511.

    Article  CAS  Google Scholar 

  60. Kossacki, P., Ferrand, D., Arnoult, A., Cibert, J., Tatarenko, S., Wasiela, A., Merle d'Aubigne, Y., Staihli, J.-L., Ganiere, J.-D., Bardyszewski, W., Swiatek, K., Sawicki, M., Wrobel, J., and Dietl, T., Ordered Magnetic Phase in Cd1 − x Mn x Te/Cd1 − yz Mg y Zn z Te: N Heterostructures: Magnetooptical Studies, Physica E (Amsterdam), 2000, vol. 6, p. 709.

    Article  CAS  Google Scholar 

  61. Sato, K., Medvedkin, G.A., Nishi, T., Hasegawa, Y., Misawa, R., Hirose, K., and Ishibashi, T., Ferromagnetic Phenomenon Revealed in the Chalcopyrite Semiconductor CdGeP2: Mn, J. Appl. Phys., 2001, vol. 89, p. 7027.

    CAS  Google Scholar 

  62. Overberg, M.E., Gila, B.P., Thaler, G.T., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N.A., McCarthy, K.T., Arnason, S.B., Hebard, A.F., Chu, S.N.G., Wilson, R.G., Zavada, J.M., and Park, Y.D., Room Temperature Magnetism in GaMnP Produced by Both Ion Implantation and Molecular-Beam Epitaxy, J. Vac. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom., 2002, vol. 20, p. 969.

    CAS  Google Scholar 

  63. Dietl, T., Ohno, H., Matsukura, F., Cubert, J., and Ferrand, D., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science (Washington, D.C., 1883-), 2000, vol. 287, p. 1019.

    Article  CAS  Google Scholar 

  64. Dietl, T., Haury, A., and Merle d'Aubigne, Y., Free Carrier-Induced Ferromagnetism in Structures of Diluted Magnetic Semiconductors, Phys. Rev. B: Condens. Matter., 1997, vol. 55, p. 3347.

    Google Scholar 

  65. Reed, M.L., El-Masry, N.A., Stadelmaier, H., Ritums, M.E., Reed, N.J., Parker, C.A., Roberts, J.C., and Bedair, S.M., Room Temperature Ferromagnetic Properties of (Ga,Mn)N, Appl. Phys. Lett, 2001, vol. 79, p. 3473.

    Article  CAS  Google Scholar 

  66. Theodoropoulou, N., Hebard, A.F., Overberg, M.E., Abernathy, C.R., Pearton, S.J., Chu, S.N.G., and Wilson, R.G., Magnetic and Structural Properties of Mn-Implanted GaN, Appl. Phys. Lett, 2001, vol. 78, p. 3475.

    Article  CAS  Google Scholar 

  67. Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y., and Hori, H., Molecular Beam Epitaxy of Wurtzite (Ga,Mn)N Films on Sapphire(0001) Showing the Ferromagnetic Behaviour at Room Temperature, J. Cryst. Growth, 2002, vols. 237–239, p. 1358.

    Google Scholar 

  68. Sasaki, T., Sonoda, S., Yamamoto, Y., Suga, K., Shimizu, S., Kindo, K., and Hori, H., Magnetic and Transport Characteristics on High Curie Temperature Ferromagnet of Mn-Doped GaN, J. Appl. Phys., 2002, vol. 91, p. 7911.

    CAS  Google Scholar 

  69. Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J., and Ren, F., Magnetic Properties of n-GaMnN Thin Films, Appl. Phys. Lett., 2002, vol. 80, p. 3964.

    Article  CAS  Google Scholar 

  70. Park, H.-J., Lee, Y.C., Cho, S.-Y., Jeong, C.R., and Cho, S., Room-Temperature Ferromagnetism in Cr-Doped GaN Single Crystals, Appl. Phys. Lett., 2002, vol. 80, p. 4187.

    CAS  Google Scholar 

  71. Hashimoto, M., Zhou, Y.-K., Kanamura, M., and Asahi, H., High Temperature (>400 K) Ferromagnetism in III–V-Based Diluted Magnetic Semiconductor GaCrN Grown by ECR Molecular-Beam Epitaxy, Solid State Commun., 2002, vol. 122, p. 37.

    Article  CAS  Google Scholar 

  72. Overberg, M.E., Abernathy, C.R., Pearton, S.J., Theodoropoulou, N.A., McCarthy, K.T., and Hebard, A.F., Indication of Ferromagnetism in Molecular-Beam-Epitaxy-Derived n-Type GaMnN, Appl. Phys. Lett., 2001, vol. 79, p. 1312.

    CAS  Google Scholar 

  73. Kim, K.H., Lee, K.J., Kim, D.J., Kim, H.J., Ihm, Y.E., Djayaprawira, D., Takahashi, M., Kim, C.S., Kim, C.G., and Yoo, S.H., Magnetotransport of p-Type GaMnN Assisted by Highly Conductive Precipitates, Appl. Phys. Lett., 2003, vol. 82, p. 1775.

    CAS  Google Scholar 

  74. Dhar, S., Brandt, O., Trampert, A., Daweriz, L., Friendland, K.J., Ploog, K.H., Keller, J., Beschoten B., and Guntherodt, G., Origin of High-Temperature Ferromagnetism in (Ga,Mn)N Layers Grown on 4H-SiC(0001) by Reactive Molecular-Beam Epitaxy, Appl. Phys. Lett., 2003, vol. 82, p. 2077.

    Article  CAS  Google Scholar 

  75. Katayama-Yoshida, H. and Sato, K., Spin and Charge Control Method of Ternary II–VI and III–V Magnetic Semiconductors for Spintronics: Theory vs. Experiment, J. Phys. Chem. Solids, 2003, vol. 64, pp. 1447–1452.

    CAS  Google Scholar 

  76. Warczewski, J. and Krok-Kowalski, J., Magnetic, Electrical, and Structural Properties of Some Ternary and Quaternary Spinels with Chromium, J. Phys. Chem. Solids, 2003, vol. 64, pp. 1609–1614.

    CAS  Google Scholar 

  77. Lotgering, F.K., Coordination of Cr and Magnetic Properties, in Proceedings of the International Conference on Magnetism, Nottingham, 1964, pp. 533–539.

  78. Lotgering, F.K., On the Antiferromagnetism of ZnCr2Se4, Solid State Commun., 1965, vol. 3, p. 347.

    CAS  Google Scholar 

  79. Kubiak, S., Zarek, W., Drzazga, Z., Krok, J., and Chejkowski, A., Magnetic Properties of the Chalcogenide Spinels CdCr2S4, CdCr2Se4, HgCr2S4, HgCr2Se4, Acta Phys. Pol., A, 1974, vol. 5, p. 819.

    Google Scholar 

  80. Krok, J., Spalek, J., Juszczyk, S., and Warczewski, J., Effect of Double Exchange on Magnetic Properties of Cu x Zn1 − x Cr2Se4, Phys. Rev. B: Condens. Matter., 1983, vol. 28, p. 6499.

    CAS  Google Scholar 

  81. Warczewski, J., Krok-Kowalski, J., Koroleva, L.I., Mydlarz, T., Gilewski, A., and Pacyna, A., Double Exchange Magnetic Interaction and Giant Negative Magnetoresistivity in the Spin Glass State of the New Compound CuCr1.6Sb0.4S4, J. Alloys Compd., 2001, vol. 319, p. 7.

    Article  CAS  Google Scholar 

  82. Krok-Kowalski, J., Warczewski, J., Gusin, P., Liszkowski, P., Krajewski, K., Koroleva, L.I., Pacyna, A., Mydlarz, T., and Matyjasik, S., Influence of the Sb Concentration onto the Spin Glass State in the Spinel Compounds CuCr2 − x Sb x S4, J. Magn. Magn. Mater., 2002, vols. 242–245, pp. 921–923.

    Google Scholar 

  83. Krok-Kowalski, J., Warczewski, J., and Nikiforov, K., Correlations of the Magnetic and Electrical Properties with the Ionic Radii of Cations and Anions for the Series of Ternary and Quaternary Spinel-Type Chromium Compounds, J. Alloys Compd., 2001, vol. 315, pp. 62–67.

    Article  CAS  Google Scholar 

  84. Shannon, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., Sect. A: Found. Crystallogr., 1976, vol. 32, p. 751.

    Google Scholar 

  85. Tang, J.K., Li, L., Saxena, S.S., Puri, A., Falster, A.U., and Simons, W.B., The Effects of Arsenic Doping on the Magnetic Properties of CuCr2Se4, IEEE Trans. Magn., 1994, vol. 30, p. 4972.

    CAS  Google Scholar 

  86. Baran, M., Szymczak, R., Szymczak, H., and Tsurkan, V., Spin Glass Like Behavior of Magnetization in Anion Substituted CuCr2Se4 Magnetic Semiconductor, J. Magn. Magn. Mater., 1995, vols. 140–144, p. 2043.

    Google Scholar 

  87. Krupicka, S. and Novak, P., Oxide Spinels, in Ferromagnetic Materials, Amsterdam: North-Holland, 1982, pp. 189–304.

    Google Scholar 

  88. Van Stapele, R.P., Sulphospinel, in Ferromagnetic Materials, Amsterdam: North-Holland, 1982, pp. 603–745.

    Google Scholar 

  89. Okonska-Kozlowska, I., Kopyczok, J., Lutz, H.D., and Stingl, T., Single-Crystal Structure Refinement of Spinel-Type CuCr2Se4, Acta Crystallogr., Sect. C: Struct. Commun., 1993, vol. 49, p. 1448.

    Google Scholar 

  90. Colominas, C., Neutron-Diffraction Investigation of CuCr2Se4 and CuCr2Te4, Phys. Rev., 1967, vol. 153, p. 558.

    Article  Google Scholar 

  91. Robbins, M., Lehmann, H.W., and White, J.G., Neutron Diffraction and Electrical Transport Properties of CuCr2Se4, J. Phys. Chem. Solids, 1967, vol. 28, p. 897.

    CAS  Google Scholar 

  92. Kanomata, T., Ido, H., and Kaneko, T., Effect of Pressure on Curie Temperature of Chalcogenide Spinels CuCr2 X 4 (X = S, Se, and Te), J. Phys. Soc. Jpn., 1970, vol. 29, pp. 332.

    Article  CAS  Google Scholar 

  93. Nakatani, L., Nose, H., and Masumoto, K.H., J. Jpn. Inst. Metal., 1977, vol. 41, p. 939.

    CAS  Google Scholar 

  94. Okonska-Kozlowska, I., Krok, J., and Anorg, Z., Formation of Crystalline Solid Solution in System Zn1 − x Cu x Cr2Se4, Z. Anorg. Allg. Chem., 1978, vol. 447, p. 235.

    CAS  Google Scholar 

  95. Goodenough, J.B., Tetrahedral-Site Copper in Chalcogenide Spinels, Solid State Commun., 1967, vol. 5, p. 577.

    Article  CAS  Google Scholar 

  96. Lotgering, F.K. and van Stapele, R.P., Magnetic Properties and Electrical Conduction of Copper-Containing Sulfo-and Selenospinels, J. Appl. Phys., 1968, vol. 39, p. 417.

    CAS  Google Scholar 

  97. Ogata, F., Hamajima, T., Kambara, T., and Gondara, K., The Spin-Polarised Electronic Band Structure of Chromium Spinels: II. CuCr2Se4 and CuCr2Te4, J. Phys. C: Solid State Phys., 1982, vol. 15, p. 3483.

    Article  CAS  Google Scholar 

  98. Winiarski, A., Okonska-Kozlowska, I., Heimann, J., and Neumann, M., Investigation of Cu x Ga y Cr z Se4 Single Crystals, J. Alloys Comp., 1996, vol. 232, p. 63.

    Article  CAS  Google Scholar 

  99. Belov, K.P., Koroleva, L.I., Shalimova, M.A., and Batorova, S.D., Some Peculiarities of Electric and Magnetic Properties of Cd1 − x Cu x Cr2Se4, Sov. Phys. Solid State, 1975, vol. 17, p. 197.

    Google Scholar 

  100. Rodic, D., Antic, B., Tellgren, R., Rundlof, H., and Blanusa, J., A Change of Magnetic Moment of Cr Ion with the Magnetic Phase Transition in CuCr2Se4, J. Magn. Magn. Mater., 1998, vol. 187, pp. 88–92.

    Article  CAS  Google Scholar 

  101. Bhattacharjee, A.K. and Benoit a La Guillaume, C., Exciton Magnetic Polaron in Semimagnetic Semiconductor Nanocrystals, Phys. Rev. B: Condens. Matter., 1997, vol. 55, no.16, p. 10613.

    CAS  Google Scholar 

  102. Wang, Y. and Herron, N., Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical, J. Phys. Chem., 1991, vol. 95, p. 525.

    CAS  Google Scholar 

  103. Murray, C.B., Norris, D.J., and Bawendi, M.G., Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se,Te) Semiconductor, J. Am. Chem. Soc., 1993, vol. 115, p. 8706.

    CAS  Google Scholar 

  104. Norris, D.J., Sacra, A., Murray, C.B., and Bawendi, M.G., Measurement of the Size Dependent Hole Spectrum in CdSe Quantum Dots, Phys. Rev. Lett., 1994, vol. 72, p. 1994.

    Article  Google Scholar 

  105. Benoit a la Guillaume, C., Exciton Magnetic Polaron in Semimagnetic Semiconductor Nanocrystals, in Proceedings of the XXII International Conference on Physics of Semiconductors, Vancouver, 1994, p. 2585.

  106. Golnik, A., Ginter, J., and Gaj, J.A., Magnetic Polarons in Exciton Luminescence of Cd1 − x Mn x Te, J. Phys. C: Solid State Phys., 1983, vol. 16, p. 6073.

    Article  CAS  Google Scholar 

  107. Akinaga, H., Takita, K., Sasaki, S., Takeyama, S., Miura, N., Nakayama, T., Minami, F., and Inoue, K., Optical Properties and Dynamical Behavior of Localized and Bound Excitons in Cd1 − x Mn x Te (x = 0.04) Grown by Molecular-Beam Epitaxy, Phys. Rev. B: Condens. Matter., 1992, vol. 46, p. 13 136.

    CAS  Google Scholar 

  108. Mackh, G., Ossau, W., Yakovlev, D.R., Waag, A., Landwehr, G., Hellmann, R., and Gobel, E.O., Localized Exciton Magnetic Polarons in Cd1 − x Mn x Te, Phys. Rev. B: Condens. Matter., 1994, vol. 49, p. 10 248.

    CAS  Google Scholar 

  109. Yakovlev, D.R., Ossau, W., Landwehr, G., Bicknell-Tassius, R.N., Waag, A., Schmeusser, S., and Uraltsev, I.N., Two Dimensional Exciton Magnetic Polaron in Cd1 − x Mn x Te Quantum Well Structures, Solid State Commun., 1992, vol. 82, p. 29.

    Article  CAS  Google Scholar 

  110. Mackh, G., Ossau, W., Yakovlev, D.R., Hellmann, R., Gobel, E.O., Wojtowicz, T., Karczewski, G., Kossut, J., and Landwehr, G., Two Dimensional Exciton Magnetic Polaron in CdTe/Cd1 − x Mn x Te Quantum Well Structures, in Proceedings of the International Conference on Semiconductor Heteroepitaxy, Montpellier, 1995, p. 210.

  111. Nhung Tran Hong and Planel, R., Quantitative Measurements of Magnetic Polaron Binding on Acceptors in CdMnTe Alloys, Physica A (Amsterdam), 1983, vols. 117–118, p. 488.

    Google Scholar 

  112. Bhattacharjee, A.K., Planel, R., and Benoit a la Guillaume, C., Nanocrystals of Diluted Magnetic Semiconductors, in Proceedings of the XVII International Conference on Physics of Semiconductors, San Francisco, 1984, p. 1431.

  113. Nhung Tran Hong, Planel, R., Benoit a la Guillaume, C., and Bhattacharjee, A.K., Acceptor-Bound Magnetic Polaron in Cd1 − x Mn x Te Semimagnetic Semiconductors, Phys. Rev. B: Condens. Matter., 1985, vol. 31, p. 2388.

    Google Scholar 

  114. Warnock, J. and Wolff, P.A., Spherical Model of Acceptor-Associated Bound Magnetic Polarons, Phys. Rev. B: Condens. Matter., 1985, vol. 31, p. 6579.

    CAS  Google Scholar 

  115. Heiman, D., Warnock, J., Wolff, P.A., Kershaw, R., Ridgley, D., Dwight, K., and Wold, A., Polarized Photoluminescence from Bound Magnetic Polarons in (Cd,Mn) Se, Solid State Commun., 1984, vol. 52, p. 909.

    Article  CAS  Google Scholar 

  116. Scalbert, D., Nawrocki, M., Benoit a la Guillaume, C., and Cernogora, J., Anisotropy of Magnetic Polarons Bound to Acceptors in Sd1 − x Mn x Se, Phys. Rev. B: Condens. Matter., 1986, vol. 33, p. 4418.

    CAS  Google Scholar 

  117. Bhattacharjee, A.K., Crystal-Field Model for Acceptor-Associated Bound Magnetic Polarons in Wurtzite Semiconductors, Phys. Rev. A: Condens. Matter., 1987, vol. 35, p. 9108.

    Google Scholar 

  118. Wang, Y., Herron, N., Moller, K., and Bein, T., Three-Dimensionally Confined Diluted Magnetic Semiconductor Clusters: Zn1 − x Mn x S, Solid State Commun., 1991, vol. 77, p. 33.

    Article  CAS  Google Scholar 

  119. Bhargava, R.N., Gallagher, D., Hong, X., and Nurmikko, A., Optical Properties of Manganese-Doped Nanocrystals of ZnS, Phys. Rev. Lett., 1994, vol. 72, p. 416.

    Article  CAS  Google Scholar 

  120. Yanata, K., Suzuki, K., and Oka, Y., Magneto-Optical Studies on Cd1 − x Mn x Se Quantum Dots, Jpn. J. Appl. Phys., Suppl., 1995, vol. 34-1, p. 164.

    Google Scholar 

  121. Maksimov, A.A., Bacher, G., McDonald, A., Kulakovskii, V.D., and Forchel, A., Magnetic Polarons in a Single Diluted Magnetic Semiconductor Quantum Dot, Phys. Rev. B: Condens. Matter., 2000, vol. 62, p. 7767.

    Google Scholar 

  122. Tver'yanovich, Yu.S. and Gutenev, M.S., Magnetokhimiya stekloobraznykh poluprovodnikov (Magnetochemistry of Vitreous Semiconductors), St. Petersburg: St. Petersburg Gos. Univ., 1997.

    Google Scholar 

  123. Tver'yanovich, Y.S. and Borisova, Z.U., On the Doping of Chalcogenide Glassy Semiconductors, J. Non-Cryst. Solids, 1987, vol. 90, nos.1–3, pp. 405–412.

    Google Scholar 

  124. Gutenev, M.S., Tver'yanovich, Yu.S., Krasil'nikova, A.P., and Kochemirovskii, V.A., Dielectric Spectroscopy of Chalcogenide Glasses Doped with Transition Metals, Fiz. Khim. Stekla, 1989, vol. 15, no.1, pp. 84–90.

    CAS  Google Scholar 

  125. Tver'yanovich, Yu.S., Gutenev, M.S., and Borisova, Z.U., Microinhomogeneity of Sb19Ge22Se59 Glass Doped with Cobalt, Neorg. Mater., 1987, vol. 23, no.10, pp. 1749–1750.

    Google Scholar 

  126. Shamoto, S., Tazawa, H., Ono, Y., Nakano, T., Nozue, Y., and Kajitani, T., Light-Induced Metal-Insulator Transition in Lu2V2O7, J. Phys. Chem. Solids, 2001, vol. 62, pp. 325–329.

    Article  CAS  Google Scholar 

  127. Shimakawa, Y., Kubo, Y., and Manako, T., Giant Magnetoresistance in Tl2Mn2O7 with the Pyrochlore Structure, Nature (London), 1996, vol. 379, p. 53.

    Article  CAS  Google Scholar 

  128. Lang, D.V. and Logan, R.A., Large-Lattice-Relaxation Model for Persistent Photoconductivity in Compound Semiconductors, Phys. Rev. Lett., 1977, vol. 39, p. 635.

    Article  CAS  Google Scholar 

  129. Oka, Y., Shen, J., Takabayashi, K., Takahashi, N., Mitsu, H., Souma, I., and Pittini, R., Dynamics of Excitonic Magnetic Polarons in Nanostructure Diluted Magnetic Semiconductors, J. Lumin., 1999, vols. 83–84, pp. 83–89.

    Google Scholar 

  130. Furdyna, J.K. and Kossut, J., Semiconductors and Semimetals, in Diluted Magnetic Semiconductors, New York: Academic, 1988, vol. 25.

    Google Scholar 

  131. Mackh, G., Ossau, W., Yakovlev, D.R., Waag, A., Landwehr, G., Hellmann, R., and Gobel, E.O., Localized Exciton Magnetic Polarons in Cd1 − x Mn x Te, Phys. Rev. B: Condens. Matter, 1994, vol. 49, p. 10248.

    CAS  Google Scholar 

  132. Mackh, G., Ossau, W., Yakovlev, D.R., Waag, A., Litz, T., and Landwehr, G., Exciton Magnetic Polarons in Semimagnetic Quantum Wells with Nonmagnetic and Semimagnetic Barriers, Solid State Commun., 1993, vol. 88, p. 221.

    Article  CAS  Google Scholar 

  133. Miao, J., Stirner, T., and Hagston W.E., Magnetic Localization of Free Exciton Magnetic Polarons in Diluted Magnetic Semiconductors, J. Appl. Phys., 1997, vol. 81, p. 6297.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by Fizika i Khimiya Stekla, Tver'yanovich, Kim, Rusnak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tver'yanovich, Y.S., Kim, D.S. & Rusnak, A.N. Effect of Light on the Magnetic Properties of Semiconductors. Glass Phys Chem 31, 563–582 (2005). https://doi.org/10.1007/s10720-005-0099-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10720-005-0099-4

Keywords

Navigation