Skip to main content
Log in

Tm3+-Activated Transparent Oxyfluoride Glass Ceramics: A Study by Raman Scattering of the Nanocrystal Size Distribution

  • Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites”
  • (St. Petersburg, Russia, July 5–7, 2004)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Absorption and emission spectroscopy of Tm3+ dopants in ultratransparent oxyfluoride glass ceramics indicates that most of the active dopants have been incorporated into the nanocrystals. The size of the nanocrystals has been estimated based on experimental studies of polarized and depolarized low-frequency Raman scattering of the Tm3+-doped glass ceramics in the range 0.5–100 cm−1. Symmetric and quadrupolar acoustic vibrations have been observed and are ascribed to the respective modes of the nanoparticles, which are argued to be β-PbF2 nanocrystals. The size distribution of the nanoparticles has been deduced from the shape of the acoustic bands. The Raman data show that the mean size of the PbF2 nanocrystals increases and that the width of the size distribution decreases with the time and temperature of the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Goncalves, M.C., Santos, L.F., and Almeida, R.M., Rare-Earth-Doped Transparent Glass-Ceramics, Comp. Rend. Chim., 2002, vol. 5, no.12, pp. 845–854.

    Article  Google Scholar 

  2. Mortier, M. and Auzel, F., Rare-Earth-Doped Transparent Glass-Ceramics with High Cross-Sections, J. Non-Cryst. Solids, 1999, vol. 257, pp. 361–365.

    Article  Google Scholar 

  3. Mortier, M., Monteville, A., Patriarche, G., Maze, G., and Auzel, F., New Progresses in Transparent Rare-Earth-Doped Glass-Ceramics, Opt. Mater., 2001, vol. 16, nos.1–2, pp. 255–267.

    Article  Google Scholar 

  4. Quimby, R.S., Tick, P.A., Borrelli, N.F., and Cornelius, L.K., Quantum Efficiency of Pr3+ Doped Transparent Glass-Ceramics, J. Appl. Phys., 1998, vol. 83, no.3, pp. 1649–1653.

    Article  Google Scholar 

  5. Kukkonen, L.L., Reaney, I.M., Furniss, D., and Seddon, A.B., Nucleation and Crystallization Behaviour of Transparent, Erbium III Doped, Oxyfluoride Glass-Ceramics for Active Photonic Devices, Phys. Chem. Glasses, 2001, vol. 42, no.3, pp. 265–273.

    Google Scholar 

  6. Tikhomirov, V.K., Furniss, D., Seddon, A.B., Reaney, I.M., Beggiora, M., Ferrari, M., Montagna, M., and Rolli, R., Fabrication and Characterization of Nanoscale, Er3+-Doped, Ultratransparent Oxy-Fluoride Glass-Ceramics, Appl. Phys. Lett., 2002, vol. 81, no.11, pp. 1937–1939.

    Article  Google Scholar 

  7. Tikhomirov, V.K., Furniss, D., Seddon, A.B., Ferrari, M., and Rolli, R., Er3+-Doped Ultratransparent Oxy-Fluoride Glass-Ceramics for Application in the 1.54 µm Telecommunication Window, J. Mater. Sci. Lett., 2002, vol. 21, pp. 293–295.

    Article  Google Scholar 

  8. Mattarelli, M., Montagna, M., Moser, E., et al., Tm3+-Activated Transparent Oxy-Fluoride Glass-Ceramics: Structural and Spectroscopic Properties, J. Non-Cryst. Solids, 2004, vols. 345–346, pp. 354–358.

    Article  Google Scholar 

  9. Wang, Y.H. and Ohwaki, J., New Transparent Vitroceramics Codoped with Er3+ and Yb3+ for Efficient Frequency Up-Conversion, Appl. Phys. Lett., 1993, vol. 63, no.24, pp. 3268–3270.

    Article  Google Scholar 

  10. Tick, P.A., Borrelli, N.F., and Reaney, I.M., The Relationship between Structure and Transparency in Glass-Ceramic Materials, Opt. Mater., 2000, vol. 15, no.1, pp. 81–91.

    Article  Google Scholar 

  11. Hayashi, H., Tanabe, S., and Hanada, T., 1.4 µm Band Emission Properties of Tm3+ Ions in Transparent Glass-Ceramics Containing PbF2 Nanocrystals for S-Band Amplifier, J. Appl. Phys., 2001, vol. 89, no.2, pp. 1041–1045.

    Article  Google Scholar 

  12. Tick, P.A., Borrelli, N.F., Cornelius, L.K., and Newhouse, M.A., Transparent Glass-Ceramics for 1300-nm Amplifier Applications, J. Appl. Phys., 1995, vol. 78, no.11, pp. 6367–6374.

    Article  Google Scholar 

  13. Tikhomirov, V.K., Seddon, A.B., Ferrari, M., et al., The Structure of Er3+-Doped Oxyfluoride Transparent Glass-Ceramics Studied by Raman Scattering, Europhys. Lett., 2003, vol. 64, no.4, pp. 529–535.

    Article  Google Scholar 

  14. Tikhomirov, V.K., Seddon, A.B., Ferrari, M., et al., On a Qualitative Model for Incorporation of Fluoride Nano-Crystals within an Oxide Network in Oxyfluoride Glass-Ceramics, J. Non-Cryst. Solids, 2004, vol. 337, pp. 191–195.

    Article  Google Scholar 

  15. Fontana, A., Viliani, G., et al., Proceedings of VI International Workshop on Disorder Systems, Andalo, Italy, 1997, in Philos. Mag. B, 1998, vol. 77, no.2.

  16. Kawamoto, Y., Kanno, R., and Qui, J., Upconversion Luminescence of Er3+ in Transparent SiO2-PbF2-ErF3 Glass-Ceramics, J. Mater. Sci., 1988, vol. 33, no.1, pp. 63–67.

    Article  Google Scholar 

  17. Martin, A.J. and Brenig, W., Model for Brillouin Scattering in Amorphous Solids, Phys. Status Solidi B, 1974, vol. 64, pp. 163–172.

    Google Scholar 

  18. Benassi, P., Pilla, O., Mazzacurati, V., et al., Disorder-Induced Light Scattering in Solids: Microscopic Theory and Applications to Some Model Systems, Phys. Rev. B: Condens. Matter, 1991, vol. 44, pp. 11734–11742.

    Google Scholar 

  19. Duval, E., Boukenter, A., and Champagnon, B., Vibration Eigenmodes and Size of Microcrystallites in Glass: Observation by Very-Low-Frequency Raman Scattering, Phys. Rev. Lett., 1986, vol. 56, pp. 2052–2055.

    Article  PubMed  Google Scholar 

  20. Lamb, H., On the Vibrations of an Elastic Sphere, Proc. London Math. Soc., 1882, vol. 13, pp. 189–212.

    Google Scholar 

  21. Duval, E., Far-Infrared and Raman Vibrational Transitions of a Solid Sphere: Selection Rules, Phys. Rev. B: Condens. Matter, 1992, vol. 46, no.9, pp. 5795–5797.

    Google Scholar 

  22. Manasreh, M.O. and Pederson, D.O., Elastic Constants of Cubic Lead Fluoride from 300 to 850 K, Phys. Rev. B: Condens. Matter, 1984, vol. 30, no.6, pp. 3482–3495.

    Google Scholar 

  23. Montagna, M. and Dusi, R., Raman Scattering from Small Spherical Particles, Phys. Rev. B: Condens. Matter, 1995, vol. 52, no.14, pp. 10080–10089.

    Google Scholar 

  24. Ivanda, M., Babocsi, K., Dem, C., et al., Low-Wave-Number Raman Scattering from CdSx Se1 − x Quantum Dots Embedded in a Glass Matrix, Phys. Rev. B: Condens. Matter, 2003, vol. 67, p. 235 329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original English Text Copyright © 2005 by Fizika i Khimiya Stekla, Mattarelli, Montagna, Rossi, Ferrari, Tikhomirov, Seddon.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattarelli, M., Montagna, M., Rossi, F. et al. Tm3+-Activated Transparent Oxyfluoride Glass Ceramics: A Study by Raman Scattering of the Nanocrystal Size Distribution. Glass Phys Chem 31, 519–524 (2005). https://doi.org/10.1007/s10720-005-0092-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10720-005-0092-y

Keywords

Navigation