Skip to main content
  • Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites”
  • Published:

Stability of High-Temperature Phases of Ultrafine Zirconia


The formation of zirconia nanocrystals upon heat treatment of amorphous zirconia hydroxide is investigated. It is demonstrated that ZrO(OH)2 · xH2O xerogel particles are aggregates of primary nanoparticles that have sizes of 3–5 nm and a short-range order structure. The phase composition, the structural parameters, and the stability of nanocrystals of high-temperature zirconia phases formed depend on the synthesis conditions of the precursor (primarily on the type of initial zirconium salts) and the heat treatment parameters (temperature, time).

This is a preview of subscription content, access via your institution.


  1. Hu, M.Z.-C., Hunt, R.D., Payzant, E.A., and Hubbard, C.R., Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Homogeneous Preparation Methods, J. Am. Ceram. Soc., 1999, vol. 82, no.9, pp. 2313–2320.

    Google Scholar 

  2. Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Bol’shakov, K.A., Ed., Moscow: Vysshaya Shkola, 1976, pp. 279–306.

    Google Scholar 

  3. Kapinovich, D.F., Zirconia: Properties and Application, Poroshk. Metall. (Kiev), 1987, no. 11, pp. 98–103.

  4. Garvie, R.S., Stabilization of the Tetragonal Structure in Zirconia Microcrystals, J. Phys. Chem., 1978, vol. 82, no.2, pp. 218–224.

    Article  Google Scholar 

  5. Burkhanov, A.V., Ermolaev, A.G., Lapovok, V.N., Petrunin, V.F., and Trusov, L.I., Pseudomorphism and Structural Relaxation in Small-Sized Particles, Poverkhnost, 1989, vol. 7, pp. 51–58.

    Google Scholar 

  6. Oleinikov, N.N., Pentin, I.V., Murav’eva, G.P., and Ketsko, V.A., Investigation into Metastable Finely Dispersed Phases Based on ZrO2, Zh. Neorg. Khim., 2001, vol. 46, no.9, pp. 1413–1420.

    Google Scholar 

  7. Guo, X., In Situ Monitoring of the Low Temperature Degradation of Tetragonal Zirconia with Impedance Spectroscopy, Adv. Eng. Mater., 2000, vol. 2, no.9, pp. 604–607.

    Article  Google Scholar 

  8. Rijnten, H.Th., Formation, Preparation, and Properties of Hydrous Zirconia, in Physical and Chemical Aspects of Adsorbents and Catalysts, Linsen, B.G., Ed., London: Academic, 1970. Translated under the title Stroenie i svoistva adsorbentov i katalizatorov, Moscow: Mir, 1973.

    Google Scholar 

  9. Petrunin, V.F., Popov, V.V., Korovin, S.A., and Yudin, I.K., Investigation into Ultrafine Iron Oxide Systems by Photon Correlation Microscopy, in Sbornik nauchnykh trudov VI Vserossiiskoi konferentsii “Fizikokhimiya ul’tradispersnykh (nano-) sistem” [Proceedings of the VI All-Russia Conference “Physics and Chemistry of Ultrafine (Nano) Systems”], Moscow: MIFI, 2003, pp. 390–394.

    Google Scholar 

  10. Sukharev, Yu.I., Rudneva, V.V., and Steksov, A.M., Specific Features of Polymerization of Zirconium Hydroxide Formed during Dehydration, Neorg. Mater., 1986, vol. 22, no.5, pp. 787–790.

    Google Scholar 

  11. Clearfield, A., The Mechanism of Hydrolytic Polymerization of Zirconyl Solutions, J. Mater. Res., 1990, vol. 5, no.1, pp. 161–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Original Russian Text Copyright © 2005 by Fizika i Khimiya Stekla, Petrunin, Popov, Zhu Hongzhi, Korovin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petrunin, V.F., Popov, V.V., Zhu, H. et al. Stability of High-Temperature Phases of Ultrafine Zirconia. Glass Phys Chem 31, 459–464 (2005).

Download citation

  • Issue Date:

  • DOI:


  • Zirconia
  • Heat Treatment
  • Order Structure
  • Treatment Parameter
  • Zirconia Phase