Skip to main content
Log in

System Approach to Analysis of the Role of the Synthesis Components and Stability of the MCM-41 Mesostructured Silicate Material

  • Proceedings of the Topical Meeting of the European Ceramic Society “Nanoparticles, Nanostructures, and Nanocomposites”
  • (St. Petersburg, Russia, July 5–7, 2004)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The formation of a mesostructured silicate material of the MCM-41 type is studied. The influence of the replacement of components in a reaction medium is investigated experimentally. Analysis of the results obtained and the data available in the literature suggests that the process under investigation is based on the approximate stoichiometric supramolecular interaction between [Si4O4 + x (OH)9 − x ]−(1 + x) silicate polyanions and C16H33(CH3)3N+ cetyltrimethylammonium cations with the formation of supramolecular aggregates, which condense to a mesostructured organosilicate composite. A further evolution of the product involves hydrolysis of the inner surface and the polymerization of the inorganic component. It is demonstrated that the properties of the product are determined, to a large extent, by the components of the reaction medium, which control the relative reaction rates in the process. The inference is made that an alcohol-ammonia medium is the most optimum for alkaline synthesis. This medium provides good preparation of the initial components for the reaction and the high rate of hydrolysis of pore walls, minimizes the osmotic effects during hydrothermal treatment, and, eventually, favors the formation of a highly structured hydrothermally stable material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iler, R.K., Chemistry of Silica, New York: Wiley, 1979.

    Google Scholar 

  2. Kresge, C.T., Leonowicz, M.E., Roth, W.J., et al., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism, Nature (London), 1992, vol. 359, pp. 710–712.

    Article  Google Scholar 

  3. Beck, J.S., Vartuli, J.C., Roth, W.J., et al., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc., 1992, vol. 114, pp. 10834–10843.

    Article  Google Scholar 

  4. Yanagisawa, T., Shimizu, T., Kuroda, K., and Kato, C., The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials, Bull. Chem. Soc. Jpn., 1990, vol. 63, pp. 988–992.

    Google Scholar 

  5. US Patent 2810902 (Du Pont), 1957 (cited according to [1]).

  6. Chiola, V., Ritsko, J.E., and Vanderpool, C.D., Process for Producing Low-Bulk Density Silica, US Patent 3556725, 1971.

  7. Stucky, G.D., Monier, A., Schuth, F., et al., Molecular and Atomic Arrays in Nanoporous Materials Synthesis, Mol. Cryst. Liq. Cryst., 1994, vol. 240, pp. 187–200.

    Google Scholar 

  8. Zhao, X.S., Lu, G.Q., and Mullar, G.J., Advances in Mesoporous Molecular Sieve MCM-41, Ind. Eng. Chem. Res., 1996, vol. 35, pp. 2075–2090.

    Article  Google Scholar 

  9. Vartuli, J.C., Kresge, C.T., Roth, W.J., et al., Designed Synthesis of Mesoporous Molecular Sieve Systems Using Surfactant Directing Agents, in Advanced Catalysts and Nanostructured Materials: Modern Synthetic Methods, Moser, W., Ed., San Diego: Academic, 1996.

    Google Scholar 

  10. Biz, S. and Occelli, M.L., Synthesis and Characterization of Mesostructured Materials, Catal. Rev.-Sci. Eng., 1998, vol. 40, no.3, pp. 329–407.

    Google Scholar 

  11. Ciesla, U. and Schuth, F., Ordered Mesoporous Materials, Micropor. Mesopor. Mater., 1999, vol. 27, pp. 131–149.

    Article  Google Scholar 

  12. Davis, M.E., Ordered Porous Material for Emerging Applications, Nature (London), 2002, vol. 417, pp. 813–821.

    Article  PubMed  Google Scholar 

  13. Schuth, F. and Schmidt, W., Microporous and Mesoporous Materials, Adv. Eng. Mater., 2002, vol. 4, no.5, pp. 269–279.

    Article  Google Scholar 

  14. Corma, A., From Microporous to Mesoporous Molecular Sieve Material and Their Use in Catalysis, Chem. Rev., 1997, vol. 97, pp. 2373–2419.

    Article  PubMed  Google Scholar 

  15. Hayward, R.C., Alberius-Henning, P., Chmelka, B.F., and Stucky, G.D., The Current Role of Mesostructures in Composite Materials and Device Fabrication, Micropor. Mesopor. Mater., 2001, vols. 44–45, pp. 619–624.

    Article  Google Scholar 

  16. Soler-Illia, G.J. de A.A., Sanchez, C., Lebeau, B., and Patarin, J., Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures, Chem. Rev., 2002, vol. 102, pp. 4093–4138.

    Article  PubMed  Google Scholar 

  17. Romannikov, V.N., Fenelonov, V.B., Nosov, A.V., et al., Physicochemical Features of Formation of Silicate Porous Mesophases: I. General Concepts of Mechanism, Izv. Akad. Nauk, Ser. Khim., 1999, no. 10, pp. 1845–1851.

  18. Solovyov, L.A., Kirik, S.D., Shmakov, A.N., and Romannikov, V.N., A Continuous Electron Density Approach in Rietveld Analysis for Structure Investigations of the Mesoporous Silicate Materials, Adv. X-ray Anal., 2001, vol. 44, pp. 110–115.

    Google Scholar 

  19. Jaroniec, M., Kruk, M., Shin, H.J., et al., Comprehensive Characterization of Highly Ordered MCM-41 Silicas Using Nitrogen Adsorption, Thermogravimetry, X-ray Diffraction, and Transmission Electron Microscopy, Micropor. Mesopor. Mater., 2001, vol. 48, pp. 127–134.

    Article  Google Scholar 

  20. McCormick, A.V. and Bell, A.T., The Solution Chemistry of Zeolite Precursors, Catal. Rev.-Sci. Eng., 1989, vol. 31, pp. 97–118.

    Google Scholar 

  21. Grun, M., Unger, K.K., Matsumoto, A., and Tsutsumi, K., Novel Pathways for the Preparation of Mesoporous MCM-14 Materials: Control of Porosity and Morphology, Micropor. Mesopor. Mater., 1999, vol. 27, pp. 207–216.

    Article  Google Scholar 

  22. Di Renzo, F., Testa, F., Chen, J.D., et al., Textural Control of Micelle-Templated Mesoporous Silicates: The Effects of Co-Surfactants and Alkalinity, Micropor. Mesopor. Mater., 1999, vol. 28, pp. 437–446.

    Article  Google Scholar 

  23. Schulz-Ekloff, G., Rathousky, J., and Zukal, A., Controlling of Morphology and Characterization of Pore Structure of Ordered Mesoporous Silica, Micropor. Mesopor. Mater., 1999, vol. 27, pp. 273–285.

    Article  Google Scholar 

  24. Yu, J., Shi, J.-L., Wang, L.-Z., et al., Preparation of High Thermal Stability MCM-41 in the Low Surfactant/Silicon Molar Ratio Synthesis System, Mater. Lett., 2001, vol. 48, pp. 112–116.

    Article  Google Scholar 

  25. Kruk, M., Jaroniec, M., and Sayari, A., Influence of Hydrothermal Restructuring Conditions on Structural Properties of Mesoporous Molecular Sieves, Micropor. Mesopor. Mater., 1999, vol. 27, pp. 217–229.

    Article  Google Scholar 

  26. Kawi, S. and Shen, S.-C., Effects of Structural and Non-Structural Al Species on the Stability of MCM-41 Materials in Boiling Water, Mater. Lett., 2000, vol. 42, pp. 108–112.

    Article  Google Scholar 

  27. Kim, W.J., Yoo, J.C., and Hayhurst, D.T., Synthesis of Hydrothermally Stable MCM-41 with Initial Adjustment of pH and Direct Addition of NaF, Micropor. Mesopor. Mater., 2000, vol. 39, pp. 177–186.

    Article  Google Scholar 

  28. Kisler, J.M., Gee, M.L., Stevens, G.W., and O’Connor, A.J., Comparative Study of Silylation Methods to Improve the Stability of Silicate MCM-41 in Aqueous Solutions, Chem. Mater., 2003, vol. 15, pp. 619–624.

    Article  Google Scholar 

  29. Mokaya, R., Influence of Alumination Pathway on the Steam Stability of Al-Grafted MCM-41, Stud. Surf. Sci. Catal., 2003, vol. 146, pp. 435–438.

    Google Scholar 

  30. Kim, W.J., Yoo, J.C., and Hayhurst, D.T., Synthesis of MCM-48 via Phase Transformation with Direct Addition of NaF and Enhancement of Hydrothermal Stability by Post-Treatment in NaF Solution, Micropor. Mesopor. Mater., 2001, vol. 49, pp. 125–137.

    Article  Google Scholar 

  31. Kim, J.M., Jun, S., and Ryoo, R., Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts: Reinvestigation for Time-Dependent Effects, J.Phys. Chem. B, 1999, vol. 103, pp. 6200–6205.

    Article  Google Scholar 

  32. Lin, H.-P. and Mou, C.-Y., Salt Effect in Post-Synthesis Hydrothermal Treatment of MCM-41, Micropor. Mesopor. Mater., 2002, vol. 55, pp. 69–80.

    Article  Google Scholar 

  33. Oye, G., Sjoblom, J., and Stocker, M., Synthesis and Characterization of Siliceous and Aluminum-Containing Mesoporous Materials from Different Surfactant Solutions, Micropor. Mesopor. Mater., 1999, vol. 27, pp. 171–180.

    Article  Google Scholar 

  34. Zhao, X.S. and Lu, G.Q., Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study, J. Phys. Chem. B, 1998, vol. 102, pp. 1556–1561.

    Article  Google Scholar 

  35. Lee, J.S., Joo, S.H., and Ryoo, R., Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters, J. Am. Chem. Soc., 2002, vol. 124, no.7, pp. 1156–1157.

    Article  PubMed  Google Scholar 

  36. Solovyov, L.A., Kirik, S.D., Shmakov, A.N., and Romannikov, V.N., X-ray Structural Modeling of Mesoporous Mesophase Material, Micropor. Mesopor. Mater., 2001, vols. 44–45, pp. 17–23.

    Article  Google Scholar 

  37. Fenelonov, V.B., Derevyankin, A.Yu., Kirik, S.D., et al., Comparative Textural Study of Highly Ordered Silicate and Aluminosilicate Mesoporous Mesophase Materials Having Different Pore Sizes, Micropor. Mesopor. Mater., 2001, vols. 44–45, pp. 33–40.

    Article  Google Scholar 

  38. Tolbert, S.H., Landry, C.C., Stucky, G.D., et al., Phase Transitions in Mesostructured Silica/Surfactant Composites: Surfactant Packing and Role of Charge Density Matching, Chem. Mater., 2001, vol. 13, pp. 2247–2256.

    Article  Google Scholar 

  39. Kleitz, F., Schmidt, W., and Schuth, F., Evolution of Mesoporous Materials during the Calcination Process: Structural and Chemical Behavior, Micropor. Mesopor. Mater., 2001, vols. 44–45, pp. 95–109.

    Article  Google Scholar 

  40. Gallis, K.W. and Landry, C.C., Synthesis of MCM-48 by a Phase Transformation Process, Chem. Mater., 1997, vol. 9, pp. 2035–2046.

    Article  Google Scholar 

  41. Xu, J., Luan, Z.H., He, H.Y., et al., A Reliable Synthesis of Cubic Mesoporous MCM-48 Molecular Sieve, Chem. Mater., 1998, vol. 10, pp. 3690–3698.

    Article  Google Scholar 

  42. Pevzner, S. and Regev, O., The In Situ Phase Transitions Occurring during Bicontinuous Cubic Phase Formation, Micropor. Mesopor. Mater., 2001, vol. 38, pp. 413–421.

    Article  Google Scholar 

  43. Romannikov, V.N., Fenelonov, V.B., and Derevyankin, A.Yu., Physicochemical Features of Formation of Silicate Porous Mesophases: II. The Effect of Size of Molecules of Surfactant Cations, Izv. Akad. Nauk, Ser. Khim., 1999, no. 10, pp. 1852–1856.

  44. Kodenev, E.G., Shmakov, A.N., Derevyankin, A.Yu., et al., Physicochemical Features of Formation of Silicate Porous Mesophases: III. Conditions of Formation and Properties of Mesoporous Silica, Izv. Akad. Nauk, Ser. Khim., 2000, no. 10, pp. 1685–1691.

  45. Zhao, X.S., Lu, G.Q., Whittaker, A.K., et al., Comprehensive Study of Surface Chemistry of MCM-41 Using Si-29 CP/MAS NMR, FTIR, Pyridine-TPD, and TGA, J. Phys. Chem. B, 1997, vol. 101, pp. 6525–6531.

    Article  Google Scholar 

  46. Solovyov, L.A., Belousov, O.V.., Shmakov, A.N., et al., X-ray Diffraction Analysis of Mesostructured Materials by Continuous Density Function Technique, Stud. Surf. Sci. Catal., 2003, vol. 146, pp. 299–302.

    Google Scholar 

  47. Solovyov, L.A., Zaikovskii, V.I., Shmakov, A.N., et al., Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy, J. Phys. Chem. B, 2002, vol. 106, pp. 12 198–12 202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 by Fizika i Khimiya Stekla, Kirik, Belousov, Parfenov, Vershinina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirik, S.D., Belousov, O.V., Parfenov, V.A. et al. System Approach to Analysis of the Role of the Synthesis Components and Stability of the MCM-41 Mesostructured Silicate Material. Glass Phys Chem 31, 439–451 (2005). https://doi.org/10.1007/s10720-005-0081-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10720-005-0081-1

Keywords

Navigation