Skip to main content

Advertisement

Log in

Interaction of sugar stabilised silver nanoparticles with Momordica charantia seed lectin, a type II ribosome inactivating protein

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Sugar-stabilised nanomaterials have received a lot of attention in cancer therapy in recent years due to their pronounced application as specific targeting agents and maximizing their therapeutic potential while bypassing off-target effects. Lectins, the carbohydrate-binding proteins, are capable of binding to receptors present on the target cell/tissue and interact with transformed glycans better than normal cells. Besides some of the lectins exhibit anticancer activity. Conjugating sugar-stabilised NPs with lectins there for is expected to multiply the potential for the early diagnosis of cancer cells and the specific release of drugs into the tumor site. Because of the prospective applications of lectin-sugar-stabilised nanoparticle conjugates, it is important to understand their molecular interaction and physicochemical properties. Momordica charantia Seed Lectin (MCL) is a type II RIP and has been known as an anti-tumor agent. Investigation of the interaction between sugar-stabilised silver nanoparticles and MCL has been performed by fluorescence spectroscopy to explore the possibility of creating an effective biocompatible drug delivery system against cancer cells. In this regard interaction between lectin and NPs should be well-preserved, while recognizing the specific cell surface sugar. Therefore experiments were carried out in the presence and absence of specific sugar galactose. Protein intrinsic fluorescence emission is quenched at ~ 20% at saturation during the interaction without any significant shift in fluorescence emission maximum. Binding experiments reveal a good affinity. Tetrameric MCL binds to a single nanoparticle. Stern-Volmer analysis of the quenching data suggests that the interaction is via static quenching leading to complex formation. Hemagglutination experiments together with interaction studies in the presence of specific sugar show that the sugar-binding site of the lectin is distinct from the nanoparticle-binding site and cell recognition is very much intact even after binding to AgNPs. Our results propose the possibility of developing MCL-silver nanoparticle conjugate with high stability and multiple properties in the diagnosis and treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data set generated during/ analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Nguyen, K.T.: Targeted nanoparticles for cancer therapy: promises and challenges. J. Nanomedic Nanotechnol 2. 1000103e (2011). https://doi.org/10.4172/2157-7439.1000103e

  2. Patel, D.J., Mistri, P.A., Prajapathi, J.J.: Treatment of cancer by using nanoparticles as a drug delivery. Int. J. Drug Dev. & Res. 4, 14–27 (2012)

    CAS  Google Scholar 

  3. Huang, R., Lau, B.L.T.: Biomolecule-nanoparticle interactions: elucidation of thermodynamics by isothermal titration calorimetry. BBA Gen. Subjects. 1860, 945–956 (2016). https://doi.org/10.1016/j.bbagen.2016.01.027

    Article  CAS  Google Scholar 

  4. Zhang, X., Huang, G., Huang, H.: The glyconanoparticle as carrier for drug delivery. Drug Delivery. 25, 1840–1845 (2018). https://doi.org/10.1080/10717544.2018.1519001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gokhan, Y., Remzi Becer, C.: Glyconanoparticles and their interactions with lectins. Polym. Chem. 6, 5503–5514 (2015). https://doi.org/10.1039/c5py00089k

    Article  Google Scholar 

  6. Mazalovska, M., Kouokam, J.C.: Plant-derived lectins as Potential cancer therapeutics and diagnostic tools. BioMed Res. Int. 1631394, 13 (2020) https://doi.org/10.1155/2020/1631394 (2020)

  7. Coehlo, L.C.B., Silva, P.M.S., Lima, V.L.M., Punctual, E.V., Paiva, P.M.G., Napoelao, T.H., Correia, M.T.S.: Lectins, Interconnecting protein with biotechnological/pharmacological and therapeutic applications.Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2017/1594074 (2017)

  8. Gautam, A.K., Sharma, D., Sharma, J., Saini, K.C.: Legume lectins: potential use as a diagnostics and therapeutics against the cancer. Int. J. of Bio Macromolecules. 142, 474–483 (2019). https://doi.org/10.1016/j.ijbiomac.2019.09.119

    Article  CAS  Google Scholar 

  9. Devi, R.V., Basil-Rose, M.R.: Lectins as the ligand for directing nanostructured systems. Curr. Drug Deliv. (2018). https://doi.org/10.2174/1567201815666180108101246

    Article  PubMed  Google Scholar 

  10. Martínez-Carmona, M., Lozano, D., Colilla, M., Vallet-Regí, M.: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 65, 393–404 (2018). https://doi.org/10.1016/j.actbio.2017.11.007

    Article  PubMed  Google Scholar 

  11. Wang, R., Huang, J., Chen, J., Yang, M., Wang, H., Qiao, H., Chen, Z., Hu, L., Di, L., Li, J.: Enhanced anti-colon cancer efficacy of 5-Fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine. 21, 102068 (2019). https://doi.org/10.1016/j.nano.2019.102068

    Article  CAS  PubMed  Google Scholar 

  12. Chen, N.-T., Souris, J.S., Cheng, S.-H., Chu, C.-H., Wang, Y.-C., Konda, V., Dougherty, U., Mou, C.-Y., B, Chen, C.-T.: Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. Nanomedicine. 13, 1941–1952 (2017). https://doi.org/10.1016/j.nano.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  13. Chowdhury, A.D., Ganganboina, A.B., Tsai, Y., Chiu, H., Doong, R.: Multifunctional GQDs-Concanavalin A@Fe3O4 nanocomposites for cancer cells detection and targeted drug delivery. Anal. Chim. Acta. 1027, 109–120 (2018). https://doi.org/10.1016/j.aca.2018.04.029

    Article  Google Scholar 

  14. Marangoni, V.S., Paino, I.M., Zucolotto, V.: Synthesis and characterization of Jacalin- gold nanoparticle conjugate as specific markers for cancer cells. Colloids and Surfaces B: Biointerfaces. 112, 380–386 (2013). https://doi.org/10.1016/j.colsurfb.2013.07.070

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed, K.B.A., Mohemmad, A.S., Anbazhagan, V.: Interaction of sugar-stabilised silver nanoparticles with T-antigen specific lectin Jacalin from Artocarpus integrifolia. Spectrochimica Acta PartA: Molecular and bimolecular spectroscopy. 145, 110–116 (2015). https://doi.org/10.1016/j.saa.2015.01.133

    Article  Google Scholar 

  16. Kenoth, R., Reddy, D.R., Maiya, B.G., Swamy, M.J.: Thermodynamic and kinetic analysis of porphyrin binding to Trichosanthes cucumerina seed lectin. Eur. J. Biochem. 268, 5541–5549 (2001). https://doi.org/10.1046/j.1432-1033.2001.02491.x

    Article  CAS  PubMed  Google Scholar 

  17. Komath, S.S., Kavitha, M., Swamy, M.J.: Beyond Carbohydrate-Binding: new directions in Plant Lectin Research. Org. Biomol. Chem. 4, 973–988 (2006). https://doi.org/10.1039/B515446D

    Article  CAS  PubMed  Google Scholar 

  18. Kavitha, M., Sultan, N.A.M., Swamy, M.J.: Fluorescence studies on the interaction of hydrophobic ligands with Momordica charantia (bitter gourd) seed lectin. J. Photochem. Photobiol B Biol. 94, 59–64 (2009). https://doi.org/10.1016/j.jphotobiol.2008.10.002

    Article  CAS  Google Scholar 

  19. Raman, A., Lau, C.: Anti-diabetic properties and phytochemistry of Momordica charantia L. (Cucurbitaceae). Phytomedicine. 2, 349–362 (1996). https://doi.org/10.1016/S0944-7113(96)80080-8

    Article  CAS  PubMed  Google Scholar 

  20. Bailey, C.J., Day, C., Leatherdale, B.A.: Traditional treatments for diabetes from Asia and the West Indies. Pract. Diabetes. 3, 190–192 (1986). https://doi.org/10.2337/diacare.12.8.553

    Article  Google Scholar 

  21. Grover, J.K., Yadav, S.P.: Pharmacological actions and potential uses of Momordica charantia: a review. J. Ethnopharmacol. 93, 123–132 (2004). https://doi.org/10.1016/j.jep.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  22. Fang, E.F., Zhang, C.Z., Y, Ng, T.B., Wong, J.H., Pan, W.L., Ye, X.J., Chan, Y.S., Fong, W.P.: Momordica charantia lectin, a type II ribosome-inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev. Res. 5, 109–121 (2012). https://doi.org/10.1158/1940-6207.CAPR-11-0203

    Article  CAS  Google Scholar 

  23. Mazumder, T., Gaur, N., Surolia, A.: The physicochemical properties of the galactose-specific lectin from Momordica charantia. Eur. J. Biochem. 113, 463–470 (1981). https://doi.org/10.1111/j.1432-1033.1981.tb05086.x

    Article  CAS  PubMed  Google Scholar 

  24. Sultan, N.A.M., Maiya, B.G., Swamy, M.J.: Thermodynamic analysis of porphyrin binding to Momordica charantia (bitter gourd) lectin. Eur. J. Biochem. 271, 3274–3282 (2004). https://doi.org/10.1111/j.1432-1033.2004.04261.x)

    Article  CAS  PubMed  Google Scholar 

  25. Appukuttan, P.S., Surolia, A., Bachhawat, B.K.: Isolation of two galactose-binding proteins from Ricinus communis by affinity chromatography. Indian J. Biochem. Biophys. 14, 382–384 PMID: 615111 (1977)

  26. Kenoth, R., Komath, S.S., Swamy, M.J.: Physicochemical and saccharide binding studies on the galactose-specific seed lectin from Trichosanthes cucumerina). Arch. Biochem. Biophys. 413, 131–138 (2003). https://doi.org/10.1016/S0003-9861(03)00094-8

    Article  CAS  PubMed  Google Scholar 

  27. Chipman, D.C., Grisaro, V., Sharon, N.: The binding of oligosaccharides N-acetylglucosamine and N-acetylmuramic acid to lysozyme. The specificity of binding subsites. J. Biol. Chem. 242, 4388–4394 (1967). https://doi.org/10.1016/S0021-9258(18)99551-7

    Article  CAS  PubMed  Google Scholar 

  28. Eftink, M.R., Ghiron, C.A.: Fluorescence quenching studies with proteins. Anal. Biochem. 114, 199–227 (1981). https://doi.org/10.1016/0003-2697(81)90474-7

    Article  CAS  PubMed  Google Scholar 

  29. Eftink, M.R., Ghiron, C.A.: Fluorescence quenching of indole and model micelle systems. J. Phys. Chem. 80, 486–493 (1976). https://doi.org/10.1021/j100546a014

    Article  CAS  Google Scholar 

  30. Sultan, N.A.M., Swamy, M.J.: Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: an isothermal titration calorimetric study. Arch. Biochem. Biophys. 437, 115–125 (2005). https://doi.org/10.1016/j.abb.2005.03.005

    Article  CAS  PubMed  Google Scholar 

  31. Kenoth, R., Swamy, M.J.: Steady-state and time-resolved fluorescence studies on Trichosanthes cucucmerina seed lectin. J. Photochem. Photobiology B: Biology. 69, 193–201 (2003). https://doi.org/10.1016/S1011-1344(03)00021-6

    Article  CAS  Google Scholar 

  32. Chandran, T., Sharma, A., Vijayan, M.: Crystallization and preliminary X-ray studies of a galactose-specific lectin from the seeds of bitter gourd (Momordica charantia). Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 66, 1037–1040(2010). https://doi.org/10.1107/S174430911002659X

  33. Chandran, T., Sharma, A., Vijayan, M.: Structural studies on a non-toxic homolog of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. J. of Biosciences. 40, 929–941 (2015). https://doi.org/10.1007/s12038-015-9573-x

  34. Goldstein, I.J., Poretz, R.D.: In: Goldstein, I.J. (ed.) The Lectins. Properties, Functions, and Applications in Biology and Medicine (Liener, I. E, N. Sharon, N, p. 33. Academic Press, New York, USA (1986)

    Google Scholar 

Download references

Acknowledgements

This work was supported by research grants (DST/WOS-A/CS-86/2019) from DST and (YSS/2015/000783) from DST-SERB to Dr. Roopa Kenoth. Dr. Ravi Kanth Kamlekar thank for the support provided by DST-SERB (YSS/2014 /000021). The authors thank VIT, Vellore for Seed Grant (SG20210066), research and infrastructure facilities.

Author information

Authors and Affiliations

Authors

Contributions

R. Kenoth conceived the ideas and planned the research, purified the lectin, and did the characterization with help of R. K Kamleakar. A. Sreekumar and A. Sukanya and A. Anand Prabu helped in executing the experiments. R. Kenoth and R. K. Kamlekar wrote the manuscript. All authors read and corrected the manuscript.

Corresponding authors

Correspondence to Roopa Kenoth or Ravi Kanth Kamlekar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Ethical approval

This article does not involve any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenoth, R., Sreekumar, A.K., Sukanya, A. et al. Interaction of sugar stabilised silver nanoparticles with Momordica charantia seed lectin, a type II ribosome inactivating protein. Glycoconj J 40, 179–189 (2023). https://doi.org/10.1007/s10719-023-10107-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10107-w

Keywords

Navigation