Skip to main content

Advertisement

Log in

Simple separation of glycosphingolipids in the lower phase of a Folch’s partition from crude lipid fractions using zirconium dioxide

  • Short Communication
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A simple method was developed for the separation of glycosphingolipids (GSLs) from lipid mixtures, including phospholipids and cholesterol, using zirconium dioxide (zirconia, ZrO2). Although this procedure does not incorporate a mild alkali treatment, which is commonly used for eliminating glycerophospholipids, it can be used to remove both alkali-resistant sphingomyelin and glycerophospholipids possessing ether bonds. Importantly, when GSLs were dissolved in organic solvent together with cholesterol (Chol) and phospholipids, and loaded onto ZrO2, Chol did not bind to the ZrO2 but both the GSLs and phospholipids did. When eluted with 5 mg/mL of 2,5-dihydroxybenzoic acid in methanol, GSLs but not phospholipids were recovered, leaving the phospholipids bound to the ZrO2 particles. This method is particularly applicable for GSLs such as triglycosylceramides, tetraglycosylceramides and some pentaglycosylceramides, sulfatide and GM3 located in the lower phase of a Folch’s partition, where significant amounts of phospholipids, Chol and neutral lipids reside along with GSLs. This method was successfully used to easily isolate GSLs from biological materials for their subsequent analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.  3
Fig. 4

References

  1. Schnaar, R.L., Kinoshita, T.: Glycosphingolipids. In: Varki, A., et al. (eds.) Essentials of Glycobiology, 3rd edn, pp. 125–135. Cold Spring Harbor Laboratory press, Cold Spring Harbor. (2017). https://doi.org/10.1101/glycobiology.3e.011

  2. Liang, Y.J.: Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj. J. 39, 177–195 (2022). https://doi.org/10.1007/s10719-021-10032-w

  3. Furukawa, K., Ohmi, Y., Hamamura, K., Kondo, Y., Ohkawa, Y., Kaneko, K., Hashimoto, N., Yesmin, F., Bhuiyan, R.H., Tajima, O., Furukawa, K.: Signaling domains of cancer-associated glycolipids. Glycoconj. J. 39, 145–155 (2022). https://doi.org/10.1007/s10719-022-10051-1

  4. Aerts, J.M.F.G., Artola, M., van Eijk, M., Ferraz, M.J., Boot, R.G.: Glycosphingolipids and infection. Potential new therapeutic avenues. Front. Cell Dev. Biol. 7, 324. eCollection (2019). https://doi.org/10.3389/fcell.2019.00324

  5. Jiménez-Rojo, N., Riezman, H.: On the road to unraveling the molecular functions of ether lipids. FEBS Lett. 593, 2378–2389 (2019). https://doi.org/10.1002/1873-3468.13465

  6. Hakomori, S.I., Siddiqui, B.: Isolation and characterization of glycosphingolipid from animal cells and their membranes. Meth. Enzymol. 32, 345–367 (1974). https://doi.org/10.1016/0076-6879(74)32036-8

  7. Pinkse, M.W.H., Uitto, P.M., Ooms, B., Heck, A.J.R.: Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide Precolumns. Anal. Chem. 76, 3935–3943 (2004). https://doi.org/10.1021/ac0498617

  8. Thingholm, T.E., Larsen, M.R.: The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests. Methods Mol Biol. 527, 57–66, xi (2009). https://doi.org/10.1007/978-1-60327-834-8_5

  9. Ikeguchi, Y., Nakamura, H.: Selective enrichment of phospholipids by Titania. Anal. Sci. 16, 541–543 (2000). https://doi.org/10.2116/analsci.16.541

    Article  CAS  Google Scholar 

  10. Noda, A., Kato, M., Miyazaki, S., Kyogashima, M.: Separation of glycosphingolipids with titanium dioxide. Glycoconj. J, 35, 493–498 (2018). https://doi.org/10.1007/s10719-018-9844-5

  11. Huang, Z., Wu, Q., Lu, H., Wang, Y., Zhang, Z.: Separation of glycolipids/sphingolipids from glycerophospholipids on TiO2 coating in aprotic solvent for rapid comprehensive lipidomic analysis with liquid microjunction surface sampling-mass spectrometry. Anal. Chem. 92, 11250–11259 (2020). https://doi.org/10.1021/acs.analchem.0c01870

  12. Kweon, H.K., Håkansson, K.: Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal. Chem. 78, 1743–1749 (2006). https://doi.org/10.1021/ac0522355

  13. Wan, H., Yan, J., Yu, L., Zhang, X., Xue, X., Li, X., Liang, X.: Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Talanta. 82, 1701–1707 (2010). https://doi.org/10.1016/j.talanta.2010.07.050

  14. Gonzálvez, A.: Preinerstorfer, B., Lindner, W., Selective enrichment of phosphatidylcholines from food and biological matrices using metal oxides as solid-phase extraction materials prior to analysis by HPLC–ESI-MS/MS. Anal. Bioanal. Chem. 396, 2965–2975 (2010). https://doi.org/10.1007/s00216-010-3527-9

  15. Vilasi, A., Fiume, I., Pace, P., Rossi, M., Pocsfalvi, G.: Enrichment specificity of micro and nano-sized titanium and zirconium dioxides particles in phosphopeptide mapping. J. Mass. Spectrom. 48, 1188–1198 (2013). https://doi.org/10.1002/jms.3254

  16. Folch, J., Lees, M., Stanley, G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957). https://doi.org/10.1016/S0021-9258(18)64849-5

    Article  CAS  Google Scholar 

  17. Tanaka, K., Yamada, M., Tamiya-Koizumi, K., Kannagi, R., Aoyama, T., Hara, A., Kyogashima, M.: Systematic analyses of free ceramide species and ceramide species comprising neutral glycosphingolipids by MALDI-TOF MS with high-energy CID. Glycoconj. J. 28, 67–87 (2011). https://doi.org/10.1007/s10719-011-9325-6

  18. Seyama, Y., Yamakawa, T.: Chemical structure of glycolipid of guinea pig red blood cell membrane. J. Biochem. 75, 837–842 (1974). https://doi.org/10.1093/oxfordjournals.jbchem.a130455

  19. Ito, E., Waki, H., Miseki, K., Shimada, T., Sato, T.A., Kakehi, K., Suzuki, M., Suzuki, A.: Structural characterization of neutral glycosphingolipids using high-performance liquid chromatographyelectrospray ionization mass spectrometry with a repeated high-speed polarity and MSn switching system. Glycoconj. J. 30, 881–888 (2013). https://doi.org/10.1007/s10719-013-9492-8

  20. Barrientos, R.C., Zhang, Q.: Recent advances in the mass spectrometric analysis of glycosphingolipidome - A review. Anal. Chim. Acta. 1132, 134–155 (2020). https://doi.org/10.1016/j.aca.2020.05.051

  21. Engel, K.M., Prabutzki, P., Leopold, J., Nimptsch, A., Lemmnitzer, K., Vos, D.R.N., Hopf, C., Schiller, J.: A new update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 86, 101145 (2022). https://doi.org/10.1016/j.plipres.2021.101145

  22. Detzner, J., Pohlentz, G., Müthing, J.: Thin-layer chromatography in structure and recognition studies of shiga toxin glycosphingolipid receptors. Meth. Mol Biol. 2291, 229–252 (2021). https://doi.org/10.1007/978-1-0716-1339-9_10

  23. Fuller, M.D., Schwientek, T., Wandall, H.H., Pedersen, J.W., Clausen, H., Levery, S.B.: Structure elucidation of neutral, di-, tri-, and tetraglycosylceramides from high five cells: identification of a novel (non-arthro-series) glycosphingolipid pathway. Glycobiol. 15, 1286–1301 (2005). https://doi.org/10.1093/glycob/cwj011

  24. Jin, C., Teneberg, S.: Characterization of novel nonacid glycosphingolipids as biomarkers of human gastric adenocarcinoma. J. Biol. Chem. 298(4), 101732 (2022). https://doi.org/10.1016/j.jbc.2022.101732

  25. Abraham, W., Wertz, P.W., Downing, D.T.: Linoleate-rich acylglucosylceramides of pig epidermis: structure determination by proton magnetic resonance. J. Lipid Res. 26, 761–766 (1985). https://doi.org/10.1016/S0022-2275(20)34334-0

  26. Suetake, K., Tsuchihashi, K., Inaba, K., Chiba, M., Ibayashi, Y., Hashi, K., Gasa, S.: Novel modification of ceramide: rat glioma ganglioside GM3 having 3-O-acetylated sphingenine. FEBS. Lett. 361, 201–205 (1995). https://doi.org/10.1016/0014-5793(95)00182-9

  27. Zhu, J., Li, Y.T., Li, S.C., Cole, R.B.: Structural characterization of gangliosides isolated from mullet milt using electrospray ionization-tandem mass spectrometry. Glycobiol. 10, 985–993 (1999). https://doi.org/10.1093/glycob/9.10.985

  28. Podbielska, M., Dasgupta, S., Levery, S.B., Tourtellotte, W.W., Annuk, H., Moran, A.P., Hogan, E.L.: Novel myelin penta- and hexa-acetyl-galactosyl-ceramides: structural characterization and immunoreactivity in cerebrospinal fluid. J. Lipid Res. 51, 1394–1406 (2010). https://doi.org/10.1194/jlr.M001396

  29. Taketomi, T., Sugiyama, E., Uemura, Ki., Hara, A., Hidaka, H., Tozuka, M., Nakabayashi, T., Katsuyama, T.: Confirmation of minor components of less polar neutral and acidic glycolipids in monkey brain tissue. J. Lipid. Res. 42, 873–885 (2001). https://doi.org/10.1016/S0022-2275(20)31650-3

  30. Suzuki, Y.: Emerging novel concept of chaperone therapies for protein misfolding diseases. Proc. Jpn. Acad., Ser.  B, 90, 145–162 (2014). https://doi.org/10.2183/pjab.90.145

  31. Lenders, M., Brand, E.: Fabry Disease: The Current Treatment Landscape. Drugs. 81, 635–645 (2021). https://doi.org/10.1007/s40265-021-01486-1

  32. An, J.H., Hong, S.E., Yu, S.L., Kang, J., Park, C.G., Lee, H.Y., Lee, S.K., Lee, D.C., Park, H.W., Hwang, W.M., Yun, S.R., Park, Y., Park, M.H., Yoon, K.R., Yoon, S.H.: Ceria-Zirconia nanoparticles reduce intracellular globotriaosylceramide accumulation and attenuate kidney injury by enhancing the autophagy flux in cellular and animal models of Fabry disease. J. Nanobiotechnol. 20, 125 (2022). https://doi.org/10.1186/s12951-022-01318-8

Download references

Acknowledgements

We thank Renee Mosi, PHD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Kyogashima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1580 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasawa, H., Miyazaki, S. & Kyogashima, M. Simple separation of glycosphingolipids in the lower phase of a Folch’s partition from crude lipid fractions using zirconium dioxide. Glycoconj J 39, 789–795 (2022). https://doi.org/10.1007/s10719-022-10080-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10080-w

Keywords

Navigation