Skip to main content
Log in

Structure and physicochemical properties of polysaccharides from Poria cocos extracted by deep eutectic solvent

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Poria cocos, a famous traditional Chinese medicine and a well-known food or food supplement, has shown therapeutic potential against cancer and the uneasiness of the mind. In addition, polysaccharides (PCPs) in this fungus were found to be various bioactive. In this work, one such PCP, PCP-1, extracted by deep eutectic solvent (DES) and separated using Sephadex G-15 columns, was characterized using GC–MS, HPGPC, FT-IR, and NMR, while also tested for physicochemical properties. Results indicated that PCP-1 contained 96.89 ± 3.21% total sugars and was a glucan with molecular weight of 3.2 kD. The main glycosidic linkage was 1,3-linked Glcp with 96.82 mol% content and a triple helix structure, and β-D-Glcp-(1 → linkage connected to the main chain through an O-6 atom was the backbone structure. In terms of the physicochemical property, PCP-1 was soluble in water, but not in organic solvent, and processed a relative high water-holding capacity (8.64 ± 0.14 g/g) and low oil-holding capacity (2.52 ± 0.21 g/g). In addition, in vitro, PCP-1 was found to have the ability of scavenging DPPH, hydroxyl free radical, superoxide anion radical and reducing ferric at different levels. This research would be useful for the further application of PCP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, N.N., Zhang, Y., Wang, X.P., Huang, X.P., Fei, Y., Yu, Y., Shou, D.: Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods. Int. J. Biol. Macromol. 83, 103–110 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Jia, X.J., Ma, L.S., Li, P., Chen, M.W., He, C.W.: Process of Poria cocos polysaccharides: Isolation process, structural features and bioactivities. Trends Food Sci. Technol. 54, 52–62 (2016)

    Article  CAS  Google Scholar 

  3. Chen, Q.X., Shao, X.T., Ling, P.X., Liu, F., Han, G.Y., Wang, F.S.: Recent advances in polysaccharides for osteoarthritis therapy. Eur. J. Med. Chem. 139(20), 926–935 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Hereher, F., ElFallal, A., Toson, E., Abou-Dobara, M., Abdelaziz, M.: Pilot study: Tumor suppressive effect of crude polysaccharide substances extracted from some selected mushroom. Beni Suef University Journal of Basic & Applied Sciences 7(4), 767–775 (2018)

    Article  Google Scholar 

  5. Loukotová, L., Konefał, R., Venclíková, K., Machová, D., Janoušková, O., Rabyk, M., Netopilík, M., MázlChánová, E., Štěpánek, P., Hrubý, M.: Hybrid thermoresponsive graft constructs of fungal polysaccharide β-glucan: Physico-chemical and immunomodulatory properties. Eur. Polymer J. 106, 118–127 (2018)

    Article  CAS  Google Scholar 

  6. Yin, Z.H., Liang, Z.H., Li, C.Q., Wang, J.M., Ma, C.Y., Kang, W.Y.: Immunomodulatory effects of polysaccharides from edible fungus: a review. Food Sci. Human Wellness 10(4), 393–400 (2021)

    Article  CAS  Google Scholar 

  7. Monmai, C., Park, S. H., You, G., Park, W. J.: Immuno-enhancement effect of polysaccharide extracted from Stichopus japonicus on cyclophosphamide-induced immunosuppression mice. Food Sci. Biotechnol. https://doi.org/10.1007/s10068-017-0248-2

  8. Wang, Y.F., Shu, X., Chen, Y.Y., Zhang, S.S., Wu, B.Y., Jia, J.A.: Enrichment, purification and in vitro antioxidant activities of polysaccharides from Umbilicaria esculenta macrolichen. Biochem. Eng. J. 130, 10–20 (2018)

    Article  CAS  Google Scholar 

  9. Wang, L., Zhang, B., Xiao, J., Huang, Q., Li, C., Fu, X.: Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chem. 249, 127–135 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. Chen, X.P., Tang, Q.C., Yan, C., Wang, W.X., Li, S.B.: Simultaneous extraction of polysaccharides from Poria cocos by ultrasonic technique and its inhibitory activities against oxidative injury in rats with cervical cancer. Carbohydr. Polyms. 79(2), 409–413 (2010)

  11. Sun, Y.: Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int. J. Biol. Macromol. 68, 131–134 (2014). https://doi.org/10.1016/j.ijbiomac.2014.04.010

  12. Afshari, K., Samavati, V., Shahidi, S.A.: Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromol. 74, 558–567 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. Thirugnanasambandham, K., Sivakumar, V., Maran, J.P.: Microwave-assisted extraction of polysaccharides from mulberry leaves. Int. J. Biol. Macromol. 72, 1–5 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L., Yang, Y.Y., Zhou, R.R., Fang, L.Z., Cai, P., Yu, R., Zhang, S.H., Huang, J.H.: The extraction of phenolic acids and polysaccharides from Lilium Lancifolium Thunb. using a deep eutectic solvent. Anal. Methods 13, 1207–1310 (2021)

    Google Scholar 

  15. Zhang, L.J., Wang, M.S.: Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 95, 675–681 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. Gómez, A.V., Tadini, C.C., Biswas, A., Buttrum, M., Kim, S., Boddu, M., V., & Cheng, H. N.: Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT- Food Sci. Technol. 107, 79–88 (2019)

    Article  CAS  Google Scholar 

  17. Saravana, P. S., Cho, Y. N., Woo, H. C., Chun, B. S.: Green and efficient extraction of polysaccharides from brown seaweed by adding deep eutectic solvent in subcritical water hydrolysis. J. Cleaner Prod. 198, 1474–1484 (2018). https://doi.org/10.1016/j.jclepro.2018.07.151

  18. Jeong, K.M., Lee, M.S., Nam, M.W., Zhao, J., Jin, Y., Lee, D.K., Kwon, S.W., Jeong, J.H., Lee, J.: Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J. Chromatogr. A 1424, 10–17 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Li, P.P., Sirviö, J.A., Asante, B., Liimatainen, H.: Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohyd. Polym. 199, 219–227 (2018)

    Article  CAS  Google Scholar 

  20. Zhang, W.D., Cheng, S.B., Zhai, X.N, Sun, J.S., Hu, X.F., Pei, H.S., Chen, G.G.: Green and efficient extraction of Ppolysaccharides from Poria cocos F.A. Wolf by deep eutectic solvent. Nat. Prod. Comm. 15(2), 1–10 (2020)

  21. Guo, H.J., Zhang, W.D., Jiang, Y., Wang, H., Chen, G.G., Guo, M.R.: Physicochemical, structural, and biological properties of polysaccharides from Dandelion. Molecules 24(8), 1485 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  22. Taylor, K.A., Buchanan-Smith, J.G.: A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Anal. Biochem. 201(1), 190–196 (1992)

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X.L., Zhang, Y.F., Liu, Z.K., Zhao, M.Q., Liu, P.F.: Purification, characterization, and antioxidant activity of polysaccharides isolated from Cortex Periplocae. Molecules 22(11), 1866 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  24. Sims, I.M., Carnachan, S.M., Bell, T.J., Hinkley, S.F.R.: Methylation analysis of polysaccharides: Technical advice. Carbohyd. Polym. 188, 1–7 (2018)

    Article  CAS  Google Scholar 

  25. Needs, P.W., Selvendran, R.R.: Avoiding oxidative degradation during sodium hydroxide /methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohyd. Res. 245(1), 1–10 (1993)

    Article  CAS  Google Scholar 

  26. Rout, D., Mondal, S., Chakraborty, I., Islam, S.S.: The structure and conformation of a water-insoluble (1→3)-, (1→6)-β- d -glucan from the fruiting bodies of Pleurotus florida. Carbohyd. Res. 343(5), 982–987 (2008)

    Article  CAS  Google Scholar 

  27. Ravi, S.V., Dhachinamoorthi, D., Chandra, S.K.B.: Formulation and evaluation of novel aspirin nanoparticles loaded suppositories. J. Chin. Pharm. Sci. 3, 259–267 (2013)

    Google Scholar 

  28. Yamaguchi, T., Takamura, H., Matoba, T., Terao, J.: HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Bioence Biotechnology & Biochemistry 62(6), 1201–1204 (1998)

    Article  CAS  Google Scholar 

  29. Cheng, H., Huang, G.L.: Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide. Int. J. Biol. Macromol. 114, 415–419 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. Yi, Y., Hua, H., Sun, X., Guan, Y., Chen, C.: Rapid determination of polysaccharides and antioxidant activity of Poria cocos using near-infrared spectroscopy combined with chemometrics. Spectrochim. Acta A Mol. Biomol Spectrosc. 240, 118623 (2020). https://doi.org/10.1016/j.saa.2020.118623

  31. Shi, M.J., Wei, X.Y., Xu, J., Chen, B.J., Zhao, D.Y., Cui, S., Zhou, T.: Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity. Food Chem. 215(15), 76–83 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. Su, Y., Li, L.: Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohyd. Polym. 229, 115407 (2020)

    Article  CAS  Google Scholar 

  33. Niu, L.L., Wu, Y.R., Liu, H.P., Wang, Q., Li, M.Y., Jia, Q.: Optimization of extraction process, characterization and antioxidant activities of polysaccharide from Leucopaxillus giganteus. Journal of Food Measurement and Characterization 15, 2842–2853 (2021)

    Article  Google Scholar 

  34. Jia, X.J., Zhang, C., Qiu, J.F., Wang, L.L., Bao, J.L., Wang, K., …He, C. W.: Purification, structural characterization and anticancer activity of the novel polysaccharides from Rhynchosia minima root. Carbohyd. Polym. 132, 67–71 (2015)

    Article  CAS  Google Scholar 

  35. Chawananorasest, K., Saengtongdee, P., Kaemchantuek, P.: Extraction and characterization of Tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources Molecules 21(6), 775  (2016)

  36. Gonzaga, M.L.C., Menezes, T.M.F., Souza, J.R., R.de., Ricardo, N. M.P.S., & Soares, S. de A.: Structural characterization of β glucans isolated from Agaricus blazei Murill using NMR and FTIR spectroscopy. Bioactive Carbohydrates & Dietary Fibre 2, 152–156 (2013)

    Article  CAS  Google Scholar 

  37. Zhang, L., Hu, Y., Duan, X., Y., Tang, T.T., Shen, Y. B., Hu, B., Liu, A. P., Chen, H., Li, C., & Liu, Y. T.: Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. Int. J. Biol. Macromol. 113, 1–7 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. Liu, Y.T., Liu, Y.X., Dan, H.Y., Li, C., Liu, A.P., Chen, H., Wang, J.: Structural elucidation and hepatoprotective activities of polysaccharides from a mutant mSM-105 of Catathelasma ventricosum with enhanced production of 1,6-β-glucan. Ind. Crops Prod. 130, 459–466 (2019)

    Article  CAS  Google Scholar 

  39. Liu, X.F., Wang, X.Q., Xu, X.F., Zhang, X.W.: Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. Int. J. Biol. Macromol. 127, 39–47 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Kono, H., Kondo, N., Isono, T., Ogata, M., Hirabayashi, K.: Characterization of the secondary structure and order-disorder transition of a β-(1 → 3, 1 → 6)-glucan from Aureobasidium pullulans. Int. J. Biol. Macromol. 154, 1382–1391 (2019)

    Article  PubMed  CAS  Google Scholar 

  41. Wang, J.H., Xu, J.L., Zhang, J.C., Liu, Y., Sun, H.J., Zha, X.Q.: Physicochemical properties and antioxidant activities of polysaccharide from floral mushroom cultivated in Huangshan Mountain. Carbohyd. Polym. 131, 240–247 (2015)

    Article  CAS  Google Scholar 

  42. Duan, G.L., Yu, X.B.: Isolation, purification, characterization, and antioxidant activity of low-molecular-weight polysaccharides from Sparassis latifolia. Int. J. Biol. Macromol. 137, 1112–1120 (2019)

    Article  CAS  PubMed  Google Scholar 

  43. Song, Q.Q., Jiang, L., Yang, X.Q., Huang, L.X., Yu, Y., Chen, Y., Xie, J.H.: Physicochemical and functional properties of a water-soluble polysaccharide extracted from Mung bean (Vigna radiate L.) and its antioxidant activity. Int. J. Biol. Macromol. 138, 874–880 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. Huang, D.J., Ou, B.X., Prior, R.L.: The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53(6), 1841–1856 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Sannasimuthu, A., Arockiaraj, J.: Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. Journal of Functional Foods 61, 103513 (2019)

    Article  CAS  Google Scholar 

  46. Pulido, R., Bravo, L., Saura-Calixto, F.: Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 48(8), 3396–3402 (2000)

    Article  CAS  PubMed  Google Scholar 

  47. Asker, M.M.S., Shawky, B.T.: Structural characterization and antioxidant activity of an extracellular polysaccharide isolated from Brevibacterium otitidis BTS 44. Food Chem. 123(2), 315–320 (2010)

    Article  CAS  Google Scholar 

  48. Wang, J., Hu, S., Nie, S., Yu, Q., Xie, M.: Oxidative medicine and cellular longevity. 20, 161–213 (2016). https://doi.org/10.1155/2016/5692852

  49. Huang, Q.L., Siu, K.C., Wang, W.Q., Cheung, Y.C., Wu, J.Y.: Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem. 48(2), 380–386 (2013)

    Article  CAS  Google Scholar 

  50. Meng, L., Sun, S., Li, R., Shen, Z.P., Wang, P., Jiang, X.L.: Antioxidant activity of polysaccharides produced by Hirsutella sp. and relation with their chemical characteristics. Carbohyd. Polym. 117, 452–457 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (NSFC) (No. 21776142). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haisheng Pei or Guogang Chen.

Ethics declarations

Competing interest

The authors declare that no known competing interests influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Zhang, W., Pei, H. et al. Structure and physicochemical properties of polysaccharides from Poria cocos extracted by deep eutectic solvent. Glycoconj J 39, 475–486 (2022). https://doi.org/10.1007/s10719-022-10073-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10073-9

Keywords

Navigation