Skip to main content

Advertisement

Log in

Linking glycosphingolipids to Alzheimer’s amyloid-ß: extracellular vesicles and functional plant materials

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosphingolipids (GSLs) are a specialized class of membrane lipids composed of a ceramide and a carbohydrate head group. GSLs are localized in cell membranes and were recently found to be enriched in the membrane of neuron-derived exosomes, which are a type of extracellular vesicle. Our studies demonstrated that exosomal GSLs may be associated with the amyloid-ß (Aß) peptide, a principal agent of Alzheimer’s disease (AD), and act to clear Aß by transporting Aß into brain phagocytic microglia. In this review, we summarize and discuss the function of exosomal GSLs in Aß homeostasis in AD pathology. Improvement in Aß clearance is a potent strategy for AD prevention and therapy. Dietary glucosylceramides (GlcCer) isolated from plants are absorbed into the body as various metabolites, including ceramides. Our recent work demonstrated that dietary GlcCer accelerates neuronal exosome production, which facilitates Aß clearance in mice. Furthermore, studies of AD model mice and human clinical trials have found that oral administration of plant-type GlcCer attenuates the Aß burden in the brain. We also introduce the development of plant-type GlcCer as functional food materials to prevent AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., Beyreuther, K.: Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA 82(12), 4245–4249 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kosik, K.S., Joachim, C.L., Selkoe, D.J.: Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc. Natl. Acad. Sci. USA 83(11), 4044–4048 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardy, J., Selkoe, D.J.: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580), 353–356 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Rajendran, L., Annaert, W.: Membrane trafficking pathways in Alzheimer’s disease. Traffic 13(6), 759–770 (2021)

    Article  CAS  Google Scholar 

  5. Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., Bateman, R.J.: Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012), 1774 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hipp, M.S., Kasturi, P., Hartl, F.U.: The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20(7), 421–435 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Nedergaard, M., Goldman, S.A.: Glymphatic failure as a final common pathway to dementia. Science 370(6512), 50–56 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jeremic, D., Jiménez-Díaz, L., Navarro-López, J.D.: Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Res. Rev. 72, 101496 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. Rajendran, L., Honsho, M., Zahn, T.R., Keller, P., Geiger, K.D., Verkade, P., Simons, K.: Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA 103(30), 11172–11177 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simons, M., Raposo, G.: Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21(4), 575–581 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. Fauré, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J., Sadoul, R.: Exosomes are released by cultured cortical neurons Mol. Cell Neurosci. 231(4), 642–648 (2006)

    Article  CAS  Google Scholar 

  12. Cataldo, A.M., Barnett, J.L., Pieroni, C., Nixon, R.A.: Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuropathologic evidence for a mechanism of increased beta-amyloidogenesis. J. Neurosci. 17(16), 6142–6151 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cataldo, A.M., Rebeck, G.W., Ghetri, B., Hulette, C., Lippa, C., van Broeckhoven, C., van Duijn, C., Cras, P., Bogdanovic, N., Bird, T., Peterhoff, C., Nixon, R.A.: Endocytic disturbances distinguish among subtypes of Alzheimer’s disease and related disorders. Ann Neurol. 50(5), 661–665 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi, R.H., Milner, T.A., Li, F., Nam, E.E., Edgar, M.A., Yamaguchi, H., Beal, M.F., Xu, H., Greengard, P., Gouras, G.K.: Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am. J. Phys. Anthropol. 161(5), 1869–1879 (2002)

    CAS  Google Scholar 

  15. Langui, D., Girardot, N., Hachimi, E.K.H., Allinquant, B., Blanchard, V., Pradier, L., Duyckaerts, C.: Subcellular Topography of Neuronal Aβ Peptide in APPxPS1 Transgenic Mice. Am. J. Pathol. 165(5), 1465–1477 (2010)

    Article  Google Scholar 

  16. Yuyama, K., Sun, H., Sakai, S., Mitsutake, S., Okada, M., Tahara, H., Furukawa, J.I., Fujitani, N., Shinohara, Y., Igarashi, Y.: Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J. Biol. Chem. 289(35), 24488–24498 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuyama, K., Sun, H., Usuki, S., Sakai, S., Hanamatsu, H., Mioka, T., Kimura, N., Okada, M., Tahara, H., Furukawa, J.I., Fujitani, N., Shinohara, Y., Igarashi, Y.: A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett. 589(1), 84–88 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Yanagisawa, K., Odaka, A., Suzuki, N., Ihara, Y.: GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease Nat. Med. 1(10), 1062–1066 (1995)

    CAS  Google Scholar 

  19. Ariga, T., McDonald, M.P., Yu, R.K.: Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease–a review. J. Lipid Res. 49(6), 1157–1175 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto, N., Matsubara, T., Sato, T., Yanagisawa, K.: Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. Biochim. Biophys. Acta. 1778(12), 2717–2726 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Hong, S., Ostaszewski, B.L., Yang, T., O’Malley, T.T., Jin, M., Yanagisawa, K., Li, S., Bartels, T., Selkoe, D.J.: Soluble Aβ oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes Neuron 82(2), 308–319 (2014)

  22. Grey, M., Dunning, C.J., Gaspar, R., Grey, C., Brundin, P., Sparr, E., Linse, S.: Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 290(5), 2969–2682 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. Gaspar, R., Pallbo, J., Weininger, U., Linse, S., Sparr, E.: Ganglioside lipids accelerate α-synuclein amyloid formation. Biochim. Biophys. Acta Proteins Proteom. 1866(10), 1062–1072 (2018)

    Article  CAS  Google Scholar 

  24. Green, D.R., Oguin, T.H., Martinez, J.: The clearance of dying cells: table for two. Cell Death Differ. 23(6), 915–926 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., Ragozzino, D., Gross, C.T.: Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048), 1456–1458 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. Fitzner, D., Schnaars, M., van Rossum, D., Krishnamoorthy, G., Dibaj, P., Bakhti, M., Regen, T., Hanisch, U.-K., Simons, M.: Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124(Pt 3), 447–458 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Yuyama, K., Sun, H., Mitsutake, S., Igarashi, Y.: Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J. Biol. Chem. 287(14), 10977–10989 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brügger, B., Simons, M.: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867), 1244–1247 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Vietri, M., Radulovic, M., Stenmark, H.: The many functions of ESCRTs Nat. Rev. Mol. Cell Biol. 21(1), 25–42 (2019)

    Article  CAS  Google Scholar 

  30. Yuyama, K., Sun, H., Mikami, D., Mioka, T., Mukai, K., Igarashi, Y.: Lysosomal-associated transmembrane protein 4B regulates ceramide-induced exosome release. FASEB J. 34(12), 16022–16033 (2020)

    Article  CAS  PubMed  Google Scholar 

  31. Shao, G.-Z., Zhou, R.-L., Zhang, Q.-Y., Zhang, Y., Liu, J.-J., Rui, J.-A., Wei, X., Ye, D.-X.: Molecular cloning and characterization of LAPTM4B, a novel gene upregulated in hepatocellular carcinoma Oncogene 22(32), 5060–5069 (2003)

  32. Zhou, K., Dichlberger, A., Martinez-Seara, H., Nyholm, T.K.M., Li, S., Kim, Y.A., Vattulainen, I., Ikonen, E., Blom, T.: A Ceramide-Regulated Element in the Late Endosomal Protein LAPTM4B Controls Amino Acid Transporter Interaction ACS Cent. Sci. 4(5), 548–558 (2018)

    CAS  Google Scholar 

  33. Kajimoto, T., Okada, T., Miya, S., Zhang, L., Nakamura, S.-I.: Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4, 2712 (2013)

    Article  PubMed  CAS  Google Scholar 

  34. Sugawara, T., Aida, K., Duan, J., Hirata, T.: Analysis of glucosylceramides from various sources by liquid chromatography-ion trap mass spectrometry. J. Oleo Sci. 59(7), 387–394 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. Eguchi, K., Mikami, D., Sun, H., Tsumita, T., Takahashi, K., Mukai, K., Yuyama, K., Igarashi, Y.: Blood-brain barrier permeability analysis of plant ceramides. PLoS ONE 15(11), e0241640 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yunoki, K., Ogawa, T., Ono, J., Miyashita, R., Aida, K., Oda, Y., Ohnishi, M.: Analysis of sphingolipid classes and their contents in meals Biosci. Biotechnol. Biochem. 72(1), 222–225 (2008)

    Article  CAS  Google Scholar 

  37. Nilsson, A.: Metabolism of cerebroside in the intestinal tract of the rat Biochim. Biophys. Acta. 187(1), 113–121 (1969)

    Article  CAS  Google Scholar 

  38. Schmelz, E.M., Crall, K.J., Larocque, R., Dillehay, D.L., Merrill, A.H.: Uptake and metabolism of sphingolipids in isolated intestinal loops of mice. J. Nutr. 124(5), 702–712 (1994)

    Article  CAS  PubMed  Google Scholar 

  39. Ishikawa, J., Takada, S., Hashizume, K., Takagi, Y., Hotta, M., Masukawa, Y., Kitahara, T., Mizutani, Y., Igarashi, Y.: Dietary glucosylceramide is absorbed into the lymph and increases levels of epidermal sphingolipids. J. Dermatol. Sci. 56(3), 220–222 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. Mikami, D., Sakai, S., Nishimukai, M., Yuyama, K., Mukai, K., Igarashi, Y.: Structure-dependent absorption of atypical sphingoid long-chain bases from digestive tract into lymph. Lipids Health Dis. 20(1), 24 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hasegawa, T., Shimada, H., Uchiyama, T., Ueda, O., Nakashima, M., Matsuoka, Y.: Dietary glucosylceramide enhances cornified envelope formation via transglutaminase expression and involucrin production. Lipids 46(6), 529–535 (2011)

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji, K., Mitsutake, S., Ishikawa, J., Takagi, Y., Akiyama, M., Shimizu, H., Tomiyama, T., Igarashi, Y.: Dietary glucosylceramide improves skin barrier function in hairless mice. J. Dermatol. Sci. 44(2), 101–107 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Miyanishi, K., Shiono, N., Shirai, H., Dombo, M., Kimata, H.: Reduction of transepidermal water loss by oral intake of glucosylceramides in patients with atopic eczema. Allergy 60(11), 1454–1455 (2005)

    Article  CAS  PubMed  Google Scholar 

  44. Duan, R.-D., Nilsson, Å.: Metabolism of sphingolipids in the gut and its relation to inflammation and cancer development. Prog Lipid Res. 48(1), 62–72 (2009)

  45. Yuyama, K., Takahashi, K., Usuki, S., Mikami, D., Sun, H., Hanamatsu, H., Furukawa, J.I., Mukai, K., Igarashi, Y.: Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer’s disease. Sci Rep. 9(1), 16827–16911 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Shirakura, Y., Kikuchi, K., Matsumura, K., Mukai, K., Mitsutake, S., Igarashi, Y.: 4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Lipids Health Dis. 11(1), 108 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sigruener, A., Tarabin, V., Paragh, G., Liebisch, G., Koehler, T., Farwick, M., Schmitz, G.: Effects of sphingoid bases on the sphingolipidome in early keratinocyte differentiation Exp. Dermatol. 22(10), 677–679 (2013)

    CAS  Google Scholar 

  48. Hong, S., Beja-Glasser, V.F., Nfonoyim, B.M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K.M., Shi, Q., Rosenthal, A., Barres, B.A., Lemere, C.A., Selkoe, D.J., Stevens, B.: Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286), 712–716 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wright, A.L., Zinn, R., Hohensinn, B., Konen, L.M., Beynon, S.B., Tan, R.P., Clark, I.A., Abdipranoto, A., Vissel, B.: Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer's disease PLoS ONE 8(4), e59586 (2013)

  50. Eguchi, K., Mukai, K., Yuyama, K., Kurimoto, N., Tanaka, A., Katsuyama, T., Nishihira, J., Monde, K., Igarashi, Y.: Attenuating Effects of Glucosylceramide Extracted from Konjac on Amyloid ß Accumulation in the Human Brains Japanese Pharm. Thera. 49(8), 1–15 (2021)

    Google Scholar 

  51. Nakamura, A., Kaneko, N., Villemagne, V.L., Kato, T., Doecke, J., Doré, V., Fowler, C., Li, Q.-X., Martins, R., Rowe, C., Tomita, T., Matsuzaki, K., Ishii, K., Ishii, K., Arata, Y., Iwamoto, S., Ito, K., Tanaka, K., Masters, C.L., Yanagisawa, K.: High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554(7691), 249–254 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. Janelidze, S., Teunissen, C.E., Zetterberg, H., Allué, J.A., Sarasa, L., Eichenlaub, U., Bittner, T., Ovod, V., Verberk, I.M.W., Toba, K., Nakamura, A., Bateman, R.J., Blennow, K., Hansson, O.: Head-to-Head Comparison of 8 Plasma Amyloid-β 42/40 Assays in Alzheimer Disease. JAMA Neurol. 78(11), 1375–1382 (2021)

  53. He, X., Huang, Y., Li, B., Gong, C.X., Schuchman, E.H.: Deregulation of sphingolipid metabolism in Alzheimer's disease Neurobiol Aging. 31(3), 398–408 (2010)

  54. Mielke, M,M., Haughey, N.J., Ratnam Bandaru, V.V., Schech, S., Carrick, R., Carlson, M.C., Mori, S., Miller, M.I., Ceritoglu, C., Brown, T., Albert M., Lyketsos C.G.: Plasma ceramides are altered in mild cognitive impairment and predict cognitive decline and hippocampal volume loss. Alzheimers Dement. 6(5), 378–385 (2010)

  55. Bandaru, V.V., Troncoso, J., Wheeler, D., Pletnikova, O., Wang, J., Conant, K., Haughey, N.J.: ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer's but not normal brain. Neurobiol. Aging 30(4), 591–599 (2009)

  56. Han, X., Holtzman, D.M., McKeel, D.W., Kelley, J., Morris, J.C.: Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82(4), 809–818 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Industry Creation Departments Funding (8607011, PCS8617001) provided by Daicel Corporation to the Lipid Biofunction Section of Hokkaido University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuyama, K., Igarashi, Y. Linking glycosphingolipids to Alzheimer’s amyloid-ß: extracellular vesicles and functional plant materials. Glycoconj J 39, 613–618 (2022). https://doi.org/10.1007/s10719-022-10066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10066-8

Keywords

Navigation