Skip to main content

Advertisement

Log in

Lactosylceramide-enriched microdomains mediate human neutrophil immunological functions via carbohydrate-carbohydrate interaction

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The innate immune system of mammalian cells is the first line of defense against pathogenic microorganisms. Phagocytes, which play the central role in this system, engulf microorganisms by a mechanism that involves pattern recognition receptors on their own surface and pathogen-associated molecular patterns (PAMPs) expressed by the microorganism. Components of PAMPs include glycans (polysaccharides) and glycoconjugates (carbohydrates covalently linked to other biological molecules). Pathogenic microorganisms display specific binding affinity to various types of glycosphingolipids (sphingosine-containing glycolipids; GSLs), and GSLs are involved in host–pathogen interactions. We observed that lactosylceramide (LacCer), a neutral GSL, binds directly to certain pathogen-specific molecules (e.g., Candida albicans-derived β-glucans, mycobacterial lipoarabinomannan) via carbohydrate-carbohydrate interaction. LacCer is expressed highly on human neutrophils, and forms membrane microdomains. Such LacCer-enriched microdomains mediate several important neutrophil functions, including chemotaxis, phagocytosis, and superoxide generation. Human neutrophils phagocytose pathogenic mycobacteria (including Mycobacterium tuberculosis) through carbohydrate-carbohydrate interaction between LacCer on their own surface and mannose-capped lipoarabinomannan on the bacterium. During recognition of pathogen-specific glycans, direct association of LacCer-containing C24 fatty acid chain with Lyn (a Src family kinase) is necessary for signal transduction from the neutrophil exterior to interior. Pathogenic mycobacteria utilize a similar interaction to avoid killing by neutrophils. We describe here the mechanisms whereby LacCer mediates neutrophil immune systems via carbohydrate-carbohydrate interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pike, L.J.: Lipid Rafts: Bringing Order to Chaos. J. Lipid Res. 1, 1 (2003)

    Google Scholar 

  2. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature. 387(6633), 569–572 (1997)

    Article  CAS  Google Scholar 

  3. Hakomori, S.: Structure, organization, and function of glycosphingolipids in membrane. Curr. Opin. Hematol. 10(1), 16–24 (2003). https://doi.org/10.1097/00062752-200301000-00004

    Article  CAS  PubMed  Google Scholar 

  4. Brown, D.A., London, E.: Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem. Biophys. Res. Commun. 240(1), 1–7 (1997)

    Article  CAS  Google Scholar 

  5. Iwabuchi, K.: Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol. Biol. 1804, 83–95 (2018). https://doi.org/10.1007/978-1-4939-8552-4_4

    Article  CAS  PubMed  Google Scholar 

  6. Iwabuchi, K., Handa, K., Hakomori, S.: Separation of “glycosphingolipid signaling domain” from caveolin-containing membrane fraction in mouse melanoma B16 cells and its role in cell adhesion coupled with signaling. J. Biol. Chem. 273(50), 33766–33773 (1998)

    Article  CAS  Google Scholar 

  7. Hakomori, S.: The glycosynapse. Proc. Natl. Acad. Sci. USA. 99(1), 225–232 (2002). https://doi.org/10.1073/pnas.012540899

    Article  CAS  PubMed Central  Google Scholar 

  8. Fujita, A., Cheng, J., Fujimoto, T.: Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim. Biophys. Acta. 1791(5), 388–396 (2009)

    Article  CAS  Google Scholar 

  9. Iwabuchi, K., Prinetti, A., Sonnino, S., Mauri, L., Kobayashi, T., Ishii, K., Kaga, N., Murayama, K., Kurihara, H., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H., Nagaoka, I.: Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj. J. 25(4), 357–374 (2008). https://doi.org/10.1007/s10719-007-9084-6

    Article  CAS  PubMed  Google Scholar 

  10. Koyama-Honda, I., Fujiwara, T.K., Kasai, R.S., Suzuki, K.G.N., Kajikawa, E., Tsuboi, H., Tsunoyama, T.A., Kusumi, A.: High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J. Cell Biol. 219(12) (2020). https://doi.org/10.1083/jcb.202006125

  11. Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R., Pagano, R.E.: Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell. 14(8), 3254–3265 (2003). https://doi.org/10.1091/mbc.E02-12-0809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki, K.G., Fujiwara, T.K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A.: GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J. Cell Biol. 177(4), 717–730 (2007). https://doi.org/10.1083/jcb.200609174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saxena, K., Zimmermann, P., Schmidt, R.R., Shipley, G.G.: Bilayer properties of totally synthetic C16:0-lactosyl-ceramide. Biophys. J. 78(1), 306–312 (2000)

    Article  CAS  Google Scholar 

  14. Ferraretto, A., Pitto, M., Palestini, P., Masserini, M.: Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry. 36(30), 9232–9236 (1997). https://doi.org/10.1021/bi970428j

    Article  CAS  PubMed  Google Scholar 

  15. Iwabuchi, K., Nagaoka, I.: Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood. 100(4), 1454–1464 (2002)

    Article  CAS  Google Scholar 

  16. Hakomori, S.: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim. Biophys. Acta. 1780(3), 325–346 (2008). https://doi.org/10.1016/j.bbagen.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  17. Hakomori, S.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17(3–4), 143–151 (2000). https://doi.org/10.1023/a:1026524820177

    Article  CAS  PubMed  Google Scholar 

  18. Hakomori, S.: Traveling for the glycosphingolipid path. Glycoconj. J. 17(7–9), 627–647 (2000). https://doi.org/10.1023/a:1011086929064

    Article  CAS  PubMed  Google Scholar 

  19. Iwabuchi, K., Masuda, H., Kaga, N., Nakayama, H., Matsumoto, R., Iwahara, C., Yoshizaki, F., Tamaki, Y., Kobayashi, T., Hayakawa, T., Ishii, K., Yanagida, M., Ogawa, H., Takamori, K.: Properties and functions of lactosylceramide from mouse neutrophils. Glycobiology. 25(6), 655–668 (2015). https://doi.org/10.1093/glycob/cwv008

    Article  CAS  PubMed  Google Scholar 

  20. Shima, S., Kawamura, N., Ishikawa, T., Masuda, H., Iwahara, C., Niimi, Y., Ueda, A., Iwabuchi, K., Mutoh, T.: Anti-neutral glycolipid antibodies in encephalomyeloradiculoneuropathy. Neurology. 82(2), 114–118 (2014). https://doi.org/10.1212/wnl.0000000000000015

    Article  CAS  PubMed  Google Scholar 

  21. Ariga, T., Yu, R.K.: Antiglycolipid antibodies in Guillain-Barre syndrome and related diseases: review of clinical features and antibody specificities. J. Neurosci. Res. 80(1), 1–17 (2005). https://doi.org/10.1002/jnr.20395

    Article  CAS  PubMed  Google Scholar 

  22. Nakayama, H., Yoshizaki, F., Prinetti, A., Sonnino, S., Mauri, L., Takamori, K., Ogawa, H., Iwabuchi, K.: Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J. Leukoc Biol. 83(3), 728–741 (2008). https://doi.org/10.1189/jlb.0707478

    Article  CAS  PubMed  Google Scholar 

  23. Sato, T., Iwabuchi, K., Nagaoka, I., Adachi, Y., Ohno, N., Tamura, H., Seyama, K., Fukuchi, Y., Nakayama, H., Yoshizaki, F., Takamori, K., Ogawa, H.: Induction of human neutrophil chemotaxis by Candida albicans-derived beta-1,6-long glycoside side-chain-branched beta-glucan. J. Leukoc Biol. 80(1), 204–211 (2006). https://doi.org/10.1189/jlb.0106069

    Article  CAS  PubMed  Google Scholar 

  24. Levy, M., Futerman, A.H.: Mammalian ceramide synthases. IUBMB Life. 62(5), 347–356 (2010). https://doi.org/10.1002/iub.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakayama, H., Nagafuku, M., Suzuki, A., Iwabuchi, K., Inokuchi, J.I.: The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett. 592(23), 3921–3942 (2018). https://doi.org/10.1002/1873-3468.13275

    Article  CAS  PubMed  Google Scholar 

  26. Iwabuchi, K.: Lactosylceramide-enriched Lipid Raft-mediated Infection Immunity. Med. Mycol. J. 59(3), J51-j61 (2018). https://doi.org/10.3314/mmj.18.008

    Article  CAS  PubMed  Google Scholar 

  27. Grant, C.W., Mehlhorn, I.E., Florio, E., Barber, K.R.: A long chain spin label for glycosphingolipid studies: transbilayer fatty acid interdigitation of lactosyl ceramide. Biochim. Biophys. Acta. 902(2), 169–177 (1987)

    Article  CAS  Google Scholar 

  28. Morrow, M.R., Singh, D., Lu, D., Grant, C.W.: Glycosphingolipid fatty acid arrangement in phospholipid bilayers: cholesterol effects. Biophys. J. 68(1), 179–186 (1995)

    Article  CAS  Google Scholar 

  29. Li, X.M., Momsen, M.M., Brockman, H.L., Brown, R.E.: Lactosylceramide: effect of acyl chain structure on phase behavior and molecular packing. Biophys. J. 83(3), 1535–1546 (2002). https://doi.org/10.1016/S0006-3495(02)73923-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiricozzi, E., Ciampa, M.G., Brasile, G., Compostella, F., Prinetti, A., Nakayama, H., Ekyalongo, R.C., Iwabuchi, K., Sonnino, S., Mauri, L.: Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J. Lipid Res. 56(1), 129–141 (2015). https://doi.org/10.1194/jlr.M055319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ullrich, A., Schlessinger, J.: Signal transduction by receptors with tyrosine kinase activity. Cell. 61(2), 203–212 (1990)

    Article  CAS  Google Scholar 

  32. Sato, S.B., Ishii, K., Makino, A., Iwabuchi, K., Yamaji-Hasegawa, A., Senoh, Y., Nagaoka, I., Sakuraba, H., Kobayashi, T.: Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 279(22), 23790–23796 (2004). https://doi.org/10.1074/jbc.M313568200

    Article  CAS  PubMed  Google Scholar 

  33. Okubo, K., Brenner, M.D., Cullere, X., Saggu, G., Patchen, M.L., Bose, N., Mihori, S., Yuan, Z., Lowell, C.A., Zhu, C., Mayadas, T.N.: Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep. 35(7), 109142 (2021). https://doi.org/10.1016/j.celrep.2021.109142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Medzhitov, R., Janeway, C., Jr.: Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000)

    Article  CAS  Google Scholar 

  35. Nakayama, H., Ogawa, H., Takamori, K., Iwabuchi, K.: GSL-enriched membrane microdomains in innate immune responses. Arch. Immunol. Ther. Exp. (Warsz) 61(3), 217–228 (2013). https://doi.org/10.1007/s00005-013-0221-6

    Article  CAS  Google Scholar 

  36. Nakayama, H., Kurihara, H., Morita, Y.S., Kinoshita, T., Mauri, L., Prinetti, A., Sonnino, S., Yokoyama, N., Ogawa, H., Takamori, K., Iwabuchi, K.: Lipoarabinomannan binding to lactosylceramide in lipid rafts is essential for the phagocytosis of mycobacteria by human neutrophils. Sci. Signal. 9(449), ra101 (2016). https://doi.org/10.1126/scisignal.aaf1585

  37. Tsai, B., Gilbert, J.M., Stehle, T., Lencer, W., Benjamin, T.L., Rapoport, T.A.: Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 22(17), 4346–4355 (2003)

    Article  CAS  Google Scholar 

  38. Naroeni, A., Porte, F.: Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 70(3), 1640–1644 (2002)

    Article  CAS  Google Scholar 

  39. Nagafuku, M., Okuyama, K., Onimaru, Y., Suzuki, A., Odagiri, Y., Yamashita, T., Iwasaki, K., Fujiwara, M., Takayanagi, M., Ohno, I., Inokuchi, J.: CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. USA. 109(6), E336-342 (2012). https://doi.org/10.1073/pnas.1114965109

    Article  PubMed  PubMed Central  Google Scholar 

  40. Angstrom, J., Teneberg, S., Milh, M.A., Larsson, T., Leonardsson, I., Olsson, B.M., Halvarsson, M.O., Danielsson, D., Naslund, I., Ljungh, A., Wadstrom, T., Karlsson, K.A.: The lactosylceramide binding specificity of Helicobacter pylori. Glycobiology 8(4), 297–309 (1998)

    Article  CAS  Google Scholar 

  41. Hahn, P.Y., Evans, S.E., Kottom, T.J., Standing, J.E., Pagano, R.E., Limper, A.H.: Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278(3), 2043–2050 (2003)

    Article  CAS  Google Scholar 

  42. Karlsson, K.A.: Animal glycolipids as attachment sites for microbes. Chem. Phys. Lipid. 42(1–3), 153–172 (1986)

    Article  CAS  Google Scholar 

  43. Ohno, N., Uchiyama, M., Tsuzuki, A., Tokunaka, K., Miura, N.N., Adachi, Y., Aizawa, M.W., Tamura, H., Tanaka, S., Yadomae, T.: Solubilization of yeast cell-wall beta-(1–>3)-D-glucan by sodium hypochlorite oxidation and dimethyl sulfoxide extraction. Carbohydr. Res. 316(1–4), 161–172 (1999)

    Article  CAS  Google Scholar 

  44. Miura, N.N., Adachi, Y., Yadomae, T., Tamura, H., Tanaka, S., Ohno, N.: Structure and biological activities of beta-glucans from yeast and mycelial forms of Candida albicans. Microbiol. Immunol. 47(3), 173–182 (2003)

    Article  CAS  Google Scholar 

  45. Zimmerman, J.W., Lindermuth, J., Fish, P.A., Palace, G.P., Stevenson, T.T., DeMong, D.E.: A novel carbohydrate-glycosphingolipid interaction between a beta-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J. Biol. Chem. 273(34), 22014–22020 (1998)

    Article  CAS  Google Scholar 

  46. Kaur, D., Obregon-Henao, A., Pham, H., Chatterjee, D., Brennan, P.J., Jackson, M.: Lipoarabinomannan of Mycobacterium: mannose capping by a multifunctional terminal mannosyltransferase. Proc. Natl. Acad. Sci. USA. 105(46), 17973–17977 (2008). https://doi.org/10.1073/pnas.0807761105

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kang, P.B., Azad, A.K., Torrelles, J.B., Kaufman, T.M., Beharka, A., Tibesar, E., DesJardin, L.E., Schlesinger, L.S.: The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 202(7), 987–999 (2005). https://doi.org/10.1084/jem.20051239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fratti, R.A., Chua, J., Vergne, I., Deretic, V.: Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA. 100(9), 5437–5442 (2003). https://doi.org/10.1073/pnas.0737613100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gaur, R.L., Ren, K., Blumenthal, A., Bhamidi, S., Gonzalez-Nilo, F.D., Jackson, M., Zare, R.N., Ehrt, S., Ernst, J.D., Banaei, N.: LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 10(9), e1004376 (2014). https://doi.org/10.1371/journal.ppat.1004376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shukla, S., Richardson, E.T., Athman, J.J., Shi, L., Wearsch, P.A., McDonald, D., Banaei, N., Boom, W.H., Jackson, M., Harding, C.V.: Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog. 10(10), e1004471 (2014). https://doi.org/10.1371/journal.ppat.1004471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Souza, C., Davis, W.C., Eckstein, T.M., Sreevatsan, S., Weiss, D.J.: Mannosylated lipoarabinomannans from Mycobacterium avium subsp. paratuberculosis alters the inflammatory response by bovine macrophages and suppresses killing of Mycobacterium avium subsp. avium organisms. PloS One. 8(9), e75924 (2013). https://doi.org/10.1371/journal.pone.0075924

  52. Appelmelk, B.J., den Dunnen, J., Driessen, N.N., Ummels, R., Pak, M., Nigou, J., Larrouy-Maumus, G., Gurcha, S.S., Movahedzadeh, F., Geurtsen, J., Brown, E.J., Eysink Smeets, M.M., Besra, G.S., Willemsen, P.T., Lowary, T.L., van Kooyk, Y., Maaskant, J.J., Stoker, N.G., van der Ley, P., Puzo, G., Vandenbroucke-Grauls, C.M., Wieland, C.W., van der Poll, T., Geijtenbeek, T.B., van der Sar, A.M., Bitter, W.: The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell. Microbiol. 10(4), 930–944 (2008)

    Article  CAS  Google Scholar 

  53. Mestas, J., Hughes, C.C.: Of mice and not men: differences between mouse and human immunology. J. Immunol. 172(5), 2731–2738 (2004)

    Article  CAS  Google Scholar 

  54. Wagner, H.: The immunobiology of the TLR9 subfamily. Trends Immunol. 25(7), 381–386 (2004). https://doi.org/10.1016/j.it.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  55. Mishra, A.K., Driessen, N.N., Appelmelk, B.J., Besra, G.S.: Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 35(6), 1126–1157 (2011). https://doi.org/10.1111/j.1574-6976.2011.00276.x

    Article  CAS  PubMed  Google Scholar 

  56. Kina, K., Masuda, H., Nakayama, H., Nagatsuka, Y., Nabetani, T., Hirabayashi, Y., Takahashi, Y., Shimada, K., Daida, H., Ogawa, H., Takamori, K., Iwabuchi, K.: The novel neutrophil differentiation marker phosphatidylglucoside mediates neutrophil apoptosis. J. Immunol. 186(9), 5323–5332 (2011). https://doi.org/10.4049/jimmunol.1002100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our research studies mentioned in this review were initiated and encouraged by Dr. Sen-itiroh Hakomori (The Biomembrane Institute and Dept. of Pathobiology, University of Washington, Seattle, WA, USA), for which we are highly appreciative. Our recent studies were supported in part by grants from Foundation of Strategic Research Projects in Private Universities (S1311011) and AMED under Grant Numbers 21gm0910006h0106 and 20ae0101068h0005 (to K.I.); JSPS KAKENHI under Grant Numbers JP17K10031, JP21K06086 (to H.N.) and JP20K17471 (to K.H.). We are grateful to Dr. S. Anderson for English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Iwabuchi.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Tribute to Professor Sen-itiroh Hakomori

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwabuchi, K., Nakayama, H. & Hanafusa, K. Lactosylceramide-enriched microdomains mediate human neutrophil immunological functions via carbohydrate-carbohydrate interaction. Glycoconj J 39, 239–246 (2022). https://doi.org/10.1007/s10719-022-10060-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10060-0

Keywords

Navigation