Skip to main content
Log in

Implication of N-glycolylneuraminic acid in regulation of cell adhesiveness of C2C12 myoblast cells during differentiation into myotube cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript
  • 3 Altmetric

Abstract

A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast cells during their differentiation into myotube cells. However, the meaning of this Sia transition remains unclear. This study thus aims to gain a functional insight into this phenomenon. The following lines of evidence show that the increased de novo synthesis of Neu5Gc residues in differentiating myoblast cells promotes adhesiveness of the cells, which is beneficial for promotion of differentiation. First, the Sia transition occurred even in the C2C12 cells cultured in serum-free medium, indicating that it happens through de novo synthesis of Neu5Gc. Second, GM3(Neu5Gc) was localized in myoblast cells, but not in myotube cells, and related to expression of the CMP-Neu5Ac hydroxylase (CMAH) gene. Notably, expression of CMAH precedes myotube formation not only in differentiating C2C12 cells, but also in mouse developing embryos. Since the myoblast cells were attached on the dish surface more strongly than the myotube cells, expression of GM3(Neu5Gc) may be related to the surface attachment of the myoblast cells. Third, exogenous Neu5Gc, but not Neu5Ac, promoted differentiation of C2C12 cells, thus increasing the number of cells committed to fuse with each other. Fourth, the CMAH-transfected C2C12 cells were attached on the gelatin-coated surface much more rapidly than the mock-cells, suggesting that the expression of CMAH promotes cell adhesiveness through the expression of Neu5Gc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chal, J., Pourquié, O.: Making muscle: skeletal myogenesis. Development 144(12), 2104–2122 (2017). https://doi.org/10.1242/dev.151035

    Article  CAS  PubMed  Google Scholar 

  2. Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H., Jaenisch, R.: MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75(7), 1351–1359 (1993). https://doi.org/10.1016/0092-8674(93)90621-v

    Article  CAS  PubMed  Google Scholar 

  3. Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E.N., et al.: Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364(6437), 501–506 (1993). https://doi.org/10.1038/364501a0

    Article  CAS  PubMed  Google Scholar 

  4. Millay, D.P., O’Rourke, J.R., Sutherland, L.B., Bezprozvannaya, S., Shelton, J.M., Bassel-Duby, R., et al.: Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499(7458), 301–305 (2013). https://doi.org/10.1038/nature12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bi, P., Ramirez-Martinez, A., Li, H., Cannavino, J., McAnally, J.R., Shelton, J.M., et al.: Control of muscle formation by the fusogenic micropeptide myomixer. Science 356(6335), 323–327 (2017). https://doi.org/10.1126/science.aam9361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barresi, R., Campbell, K.P.: Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci. 119(Pt 2), 199–207 (2006). https://doi.org/10.1242/jcs.02814

    Article  CAS  PubMed  Google Scholar 

  7. Gerin, I., Ury, B., Breloy, I., Bouchet-Seraphin, C., Bolsée, J., Halbout, M., et al.: ISPD produces CDP-ribitol used by FKTN and FKRP to transfer ribitol phosphate onto α-dystroglycan. Nat Commun. 7, 11534 (2016). https://doi.org/10.1038/ncomms11534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Endo, T.: Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem. 157(1), 1–12 (2015). https://doi.org/10.1093/jb/mvu066

    Article  CAS  PubMed  Google Scholar 

  9. Inamori, K., Yoshida-Moriguchi, T., Hara, Y., Anderson, M.E., Yu, L., Campbell, K.P.: Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335(6064), 93–96 (2012). https://doi.org/10.1126/science.1214115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huizing, M., Rakocevic, G., Sparks, S.E., Mamali, I., Shatunov, A., Goldfarb, L., et al.: Hypoglycosylation of alpha-dystroglycan in patients with hereditary IBM due to GNE mutations. Mol Genet Metab. 81(3), 196–202 (2004). https://doi.org/10.1016/j.ymgme.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  11. Noguchi, S., Keira, Y., Murayama, K., Ogawa, M., Fujita, M., Kawahara, G., et al.: Reduction of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase activity and sialylation in distal myopathy with rimmed vacuoles. J Biol Chem. 279(12), 11402–11407 (2004). https://doi.org/10.1074/jbc.M313171200

    Article  CAS  PubMed  Google Scholar 

  12. Tajima, Y., Uyama, E., Go, S., Sato, C., Tao, N., Kotani, M., et al.: Distal myopathy with rimmed vacuoles: impaired O-glycan formation in muscular glycoproteins. Am J Pathol. 166(4), 1121–1130 (2005). https://doi.org/10.1016/S0002-9440(10)62332-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Go, S., Go, S., Veillon, L., Ciampa, M.G., Mauri, L., Sato, C., Kitajima, K., et al.: Altered expression of ganglioside GM3 molecular species and a potential regulatory role during myoblast differentiation. J Biol Chem. 292(17), 7040–7051 (2017). https://doi.org/10.1074/jbc.M116.771253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Go, S., Sato, C., Furuhata, K., Kitajima, K.: Oral ingestion of mannose alters the expression level of deaminoneuraminic acid (KDN) in mouse organs. Glycoconj J. 23(5–6), 411–421 (2006). https://doi.org/10.1007/s10719-006-6734-z

    Article  CAS  PubMed  Google Scholar 

  15. Schauer, R., Kamerling, J.P.: Exploration of the Sialic Acid World. Adv Carbohydr Chem Biochem. 75, 1–213 (2018). https://doi.org/10.1016/bs.accb.2018.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kitajima, K., Varki, N., Sato, C.: Advanced Technologies in Sialic Acid and Sialoglycoconjugate Analysis. Top Curr Chem. 367, 75–103 (2015). https://doi.org/10.1007/128_2013_458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sato, C., Kitajima, K.: Sialic Acids in Neurology. Adv Carbohydr Chem Biochem. 76, 1–64 (2019). https://doi.org/10.1016/bs.accb.2018.09.003

    Article  PubMed  Google Scholar 

  18. Varki, N.M., Varki, A.: Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest. 87(9), 851–857 (2007). https://doi.org/10.1038/labinvest.3700656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawano T, Koyama S, Takematsu H, Kozutsumi Y, Kawasaki H, Kawashima S, et al. Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J Biol Chem. 270(27):16458–63 (1995). https://doi.org/10.1074/jbc.270.27.16458

  20. Kawano T, Kozutsumi Y, Kawasaki T, Suzuki A. Biosynthesis of N-glycolylneuraminic acid-containing glycoconjugates. Purification and characterization of the key enzyme of the cytidine monophospho-N-acetylneuraminic acid hydroxylation system. J Biol Chem. 269(12), 9024–9 (1994)

  21. Ozawa, H., Kawashima, I., Tai, T.: Generation of murine monoclonal antibodies specific for N-glycolylneuraminic acid-containing gangliosides. Arch Biochem Biophys. 294(2), 427–433 (1992). https://doi.org/10.1016/0003-9861(92)90707-4

    Article  CAS  PubMed  Google Scholar 

  22. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259), 680–685 (1970). https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  23. Sato, C., Inoue, S., Matsuda, T., Kitajima, K.: Fluorescent-assisted detection of oligosialyl units in glycoconjugates. Anal Biochem. 266, 102–109 (1999). https://doi.org/10.1006/abio.1998.2921

    Article  CAS  PubMed  Google Scholar 

  24. Nakanishi, K., Dohmae, N., Morishima, N.: Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J. 21(11), 2994–3003 (2007). https://doi.org/10.1096/fj.06-6408com

    Article  PubMed  Google Scholar 

  25. Furukawa, K., Yamaguchi, H., Oettgen, H.F., Old, L.J., Lloyd, K.O.: Analysis of the expression of N-glycolylneuraminic acid-containing gangliosides in cells and tissues using two human monoclonal antibodies. J Biol Chem 263, 18507–18512 (1988)

    Article  CAS  Google Scholar 

  26. Bardor, M., Nguyen, D.H., Diaz, S., Varki, A.: Mechanism of uptake and incorporation of the non–human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280, 4228–4237 (2005). https://doi.org/10.1074/jbc.M412040200

    Article  CAS  PubMed  Google Scholar 

  27. Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G.-Y., Takematsu, H., Kozutsumi, Y., Suzuki, A., Furuhata, K., Cheng, F.-L., Lin, C.-H., Sato, C., Kitajima, K., Kannagi, R.: Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non–human sialic acid on human cancer cells. Cancer Res 66(6), 2937–2945 (2006). https://doi.org/10.1158/0008-5472.CAN-05-2615

    Article  CAS  PubMed  Google Scholar 

  28. Giordani, L., Parisi, A., Le Grand, F.: Satellite Cell Self-Renewal. Curr Top Dev Biol. 126, 177–203 (2018). https://doi.org/10.1016/bs.ctdb.2017.08.001

    Article  PubMed  Google Scholar 

  29. Kuang, S., Gillespie, M.A., Rudnicki, M.A.: Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1), 22–31 (2008). https://doi.org/10.1016/j.stem.2007.12.012

    Article  CAS  PubMed  Google Scholar 

  30. Ng, P.S., Böhm, R., Hartley-Tassell, L.E., Steen, J.A., Wang, H., Lukowski, S.W., et al.: Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors. Nat Commun. 5, 5750 (2014). https://doi.org/10.1038/ncomms6750

    Article  CAS  PubMed  Google Scholar 

  31. Bergfeld AK, Varki A. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH). Handbook of Glycosyltransferases and Related Genes 1559–80 (2014)

  32. Cariappa, A., Takematsu, H., Liu, H., Diaz, S., Haider, K., Boboila, C., et al.: B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med. 206(1), 125–138 (2009). https://doi.org/10.1084/jem.20081399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martin, P.T., Camboni, M., Xu, R., Golden, B., Chandrasekharan, K., Wang, C.M., et al.: N-Glycolylneuraminic acid deficiency worsens cardiac and skeletal muscle pathophysiology in α-sarcoglycan-deficient mice. Glycobiology 23(7), 833–843 (2013). https://doi.org/10.1093/glycob/cwt020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martin, P.T., Golden, B., Okerblom, J., Camboni, M., Chandrasekharan, K., Xu, R., et al.: A comparative study of N-glycolylneuraminic acid (Neu5Gc) and cytotoxic T cell (CT) carbohydrate expression in normal and dystrophin-deficient dog and human skeletal muscle. PLoS ONE 9(2), e88226 (2014). https://doi.org/10.1371/journal.pone.0088226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I (KK) am personally grateful to Dr. Sen-itiro Hakomori for his direct and indirect encouragements on me especially early in my career. I still remember my feeling when I happened to encounter his paper (Eggens et al. J. Biol. Chem. 1989; 264:9476-84) in the airplane from Japan to the US for attending an international meeting. It was as if I was struck by lightning. This was an early stage-study of the carbohydrate-carbohydrate interaction in the biological context, and actually overturned the existing concept of biomolecules. Since that time, I have been inspired by his way of thinking in science from time to time. No doubt that his contributions to glycobiology, particularly glycosphingolipid biology, would never been forgotten forever.

We thank Dr. Jin-ichi Inokuchi for his encouragement to this study. This work was supported by the Nagoya University operational subsidies 2019-2020 (to KK), Grants-in-Aid for JSPS Fellow 17J05805 (to SoG) and for Scientific Research (C) 18K06120 (to SnG).

Author information

Authors and Affiliations

Authors

Contributions

K.K. designed the study, analyzed the data, and prepared the main manuscript text and figures. So.G. was involved in all the experimental design and performances, and prepared the main manuscript text and all the figures. M.H. was involved in the design of construction of plasmids and management of the animal experiments; Sn.G. designed the study and analyzed the data. S.C. designed the study and analyzed the data.

Corresponding author

Correspondence to Ken Kitajima.

Ethics declarations

Ethical Statement

Not applicable.

Conflicts of interest/Competing interests

(include appropriate disclosures).

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, S., Sato, C., Hane, M. et al. Implication of N-glycolylneuraminic acid in regulation of cell adhesiveness of C2C12 myoblast cells during differentiation into myotube cells. Glycoconj J 39, 619–631 (2022). https://doi.org/10.1007/s10719-022-10049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10049-9

Keywords

Navigation