Skip to main content

Advertisement

Log in

Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression

  • Comprehensive Review Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cancer is a complex disease with a 5–10% hereditary base, but nutrition, lifestyle, and the environment we are exposed to influence 90–95% of cancers. Due to rapid westernization, the diet we consume is rich in advanced glycation end products (AGEs). AGEs are the heterogeneous group of compounds formed by non-enzymatic reactions between reducing sugars and amino groups of proteins, lipids, and nucleic acids. Its implication is confirmed in many chronic conditions such as diabetes, renal, cardiovascular diseases, and aging however its role in cancer development has been understudied. Cancer cells are continuously exposed to AGEs due to their increased production, owing to its high metabolic rate and aerobic glycolysis. AGEs accumulation led to glycative stress which in turn stimulates oxidative stress and inflammation, through its receptor known as receptor for advanced glycation end products (RAGE). RAGE mediates crosstalk between the tumour cells and its microenvironment components to induce hypoxia, mitochondrial dysfunction, endoplasmic reticulum stress, autophagy, epigenetic modification, and cancer stemness. This emphasizes AGEs as an essential driving factor in different aspects of cancer development, but the exact molecular mechanism has to be explored. Thus, this review gives an insight into the pathological role of AGEs at the bio-molecular level in the tumourigenesis and progression of cancer in terms of the tumour microenvironment, invasion, and metastasis. Further, the compiled clinical data relating to the AGE-RAGE axis associated with different cancers and its potential inhibitors have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADAM 10:

A disintegrin and metalloproteinase10

AGEs:

Advanced glycation end products

ALES:

Advanced lipoxidation end products

AP-1:

Activator protein 1

ATF6:

Activating transcription factor 6

Bcl-2:

B-cell lymphoma-2

Bcl-xL:

B-cell lymphoma-extra-large

CEL:

Carboxyethyllysine

ChREBP:

Carbohydrate responsive element binding protein

CML:

Carboxymethyllysine

cRAGE:

Cleaved RAGE

ECM:

Extracellular matrix

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated protein kinases

esRAGE:

:Endogenous secretory RAGE

FAK:

Focal adhesion kinase

GLO-I:

Glyoxalase-I

GLUT1:

Glucose transporters 1

GSK-3β :

Glycogen synthase kinase 3 beta

HIF-1α:

Hypoxia inducible factor-1

HMGB1:

High mobility group box 1 protein

HRE:

Hypoxia-response elements

ICAM-1:

 Intercellular cell adhesion molecule 1

IL-1/6:

Interleukin 1/6

IRE1α:

Inositol-requiring enzyme 1α

JAK/ STAT:

Janus kinase/signal transducers and activators of transcription

JNK:

C-Jun N-terminal kinases

MAMs:

Mitochondrial associated molecular membrane

MAPK:

Mitogen-activated protein kinases

MG:

Methylglyoxal

MMP:

Matrix metalloproteinases

MSR-1:

Macrophage scavenger receptor-1

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa B

NOX:

NADPH oxidase

Nrf-2:

Nuclear factor erythroid 2–related factor 2

PARP:

Poly-ADP-ribose polymerase

PDGF:

Platelet-derived growth factor

PERK:

Pancreatic ER kinase-like ER kinase

RAGE:

Receptor for AGEs

ROS:

Reactive oxygen species

sRAGE:

Soluble RAGE

TGF-β :

Transforming growth factor-β

TNF-α:

Tumour necrosis factor- α

VCAM-1:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

References

  1. Monnier, V.M.: Nonenzymatic Glycosylation, the Maillard Reaction and the Aging Process. J. Gerontol. 45, B105–B111 (1990). https://doi.org/10.1093/GERONJ/45.4.B105

    Article  CAS  PubMed  Google Scholar 

  2. Luevano-Contreras, C., Chapman-Novakofski, K.: Dietary advanced glycation end products and aging. Nutrients 2, 1247–1265 (2010). https://doi.org/10.3390/nu2121247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warburg, O.: The metabolism of carcinoma cells 1. The Journal of Cancer Research. 9, 148–163 (1925). https://doi.org/10.1158/jcr.1925.148

    Article  CAS  Google Scholar 

  4. Njoroge, F.G., Monnier, V.M.: The chemistry of the Maillard reaction under physiological conditions: a review. Prog. Clin. Biol. Res. 304, 85–107 (1989)

    CAS  PubMed  Google Scholar 

  5. Goldberg, T., Cai, W., Peppa, M., Dardaine, V., Baliga, B.S., Uribarri, J., Vlassara, H.: Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104, 1287–1291 (2004). https://doi.org/10.1016/j.jada.2004.05.214

    Article  CAS  PubMed  Google Scholar 

  6. Glomb, M.A., Monnier, V.M.: Mechanism of Protein Modification by Glyoxal and Glycolaldehyde, Reactive Intermediates of the Maillard Reaction (∗). J. Biol. Chem. 270, 10017–10026 (1995). https://doi.org/10.1074/JBC.270.17.10017

    Article  CAS  PubMed  Google Scholar 

  7. Phillips, S.A., Thornalley, P.J.: The formation of methylglyoxal from triose phosphates: Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 212, 101–105 (1993). https://doi.org/10.1111/J.1432-1033.1993.TB17638.X

    Article  CAS  PubMed  Google Scholar 

  8. Vistoli, G., de Maddis, D., Cipak, A., Zarkovic, N., Carini, M., Aldini, G.: Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radical Res. 47, 3–27 (2013). https://doi.org/10.3109/10715762.2013.815348

    Article  CAS  Google Scholar 

  9. Srikrishna, G., Nayak, J., Weigle, B., Temme, A., Foell, D., Hazelwood, L., Olsson, A., Volkmann, N., Hanein, D., Freeze, H.H.: Carboxylated N-glycans on RAGE promote S100A12 binding and signaling. J. Cell. Biochem. 110, 645–659 (2010). https://doi.org/10.1002/jcb.22575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dattilo, B.M., Fritz, G., Leclerc, E., vander Kooi, C.W., Heizmann, C.W., Chazin, W.J.: The extracellular region of the receptor for advanced glycation end products is composed of two independent structural units. Biochemistry 46, 6957–6970 (2007). https://doi.org/10.1021/bi7003735

    Article  CAS  PubMed  Google Scholar 

  11. Koch, M., Chitayat, S., Dattilo, B.M., Schiefner, A., Diez, J., Chazin, W.J., Fritz, G.: Structural Basis for Ligand Recognition and Activation of RAGE. Structure. 18, 1342–1352 (2010). https://doi.org/10.1016/j.str.2010.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Indurthi, V.S.K., Jensen, J.L., Leclerc, E., Sinha, S., Colbert, C.L., Vetter, S.W.: The TRP triad within the V-domain of the receptor for advanced glycation end products modulates folding, stability and ligand binding. Biosci. Rep. 40, (2020). https://doi.org/10.1042/BSR20193360

  13. Moysa, A., Hammerschmid, D., Szczepanowski, R.H., Sobott, F., Dadlez, M.: Enhanced oligomerization of full-length RAGE by synergy of the interaction of its domains. Sci. Rep. 9, 1–15 (2019). https://doi.org/10.1038/s41598-019-56993-9

    Article  CAS  Google Scholar 

  14. Yonekura, H., Yamamoto, Y., Sakurai, S., Petrova, R.G., Abedin, M.J., Li, H., Yasui, K., Takeuchi, M., Makita, Z., Takasawa, S., Okamoto, H., Watanabe, T., Yamamoto, H.: Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. J. Biol. Chem. 370, 1097–1109 (2003). https://doi.org/10.1042/BJ20021371

    Article  CAS  Google Scholar 

  15. Hanford, L.E., Enghild, J.J., Valnickova, Z., Petersen, S. v., Schaefer, L.M., Schaefer, T.M., Reinhart, T.A., Oury, T.D.: Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J. Biol. Chem. 279, 50019–50024 (2004). https://doi.org/10.1074/jbc.M409782200

  16. Basta, G., Leonardis, D., Mallamaci, F., Cutrupi, S., Pizzini, P., Gaetano, L., Tripepi, R., Tripepi, G., de Caterina, R., Zoccali, C.: Circulating soluble receptor of advanced glycation end product inversely correlates with atherosclerosis in patients with chronic kidney disease. Kidney Int. 77, 225–231 (2010). https://doi.org/10.1038/ki.2009.419

    Article  CAS  PubMed  Google Scholar 

  17. Tesařová, P., Kalousová, M., Jáchymová, M., Mestek, O., Petruzelka, L., Zima, T.: Receptor for advanced glycation end products (RAGE) - Soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest. 25, 720–725 (2007). https://doi.org/10.1080/07357900701560521

    Article  CAS  PubMed  Google Scholar 

  18. Jing, R., Cui, M., Wang, J., Wang, H.: Receptor for advanced glycation end products (RAGE) soluble form (sRAGE): A new biomarker for lung cancer. Neoplasma 57, 55–61 (2010). https://doi.org/10.4149/neo_2010_01_055

    Article  CAS  PubMed  Google Scholar 

  19. Krechler, T., Jáchymová, M., Mestek, O., Žák, A., Zima, T., Kalousová, M.: Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer. Clin. Biochem. 43, 882–886 (2010). https://doi.org/10.1016/j.clinbiochem.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Jiao, L., Taylor, P.R., Weinstein, S.J., Graubard, B.I., Virtamo, J., Albanes, D., Stolzenberg-Solomon, R.Z.: Advanced glycation end products, soluble receptor for advanced glycation end products, and risk of colorectal cancer. Cancer Epidemiol. Biomark. Prev. 20, 1430–1438 (2011). https://doi.org/10.1158/1055-9965.EPI-11-0066

    Article  CAS  Google Scholar 

  21. Zhou, X., Lin, N., Zhang, M., Wang, X., An, Y., Su, Q., Du, P., Li, B., Chen, H.: Circulating soluble receptor for advanced glycation end products and other factors in type 2 diabetes patients with colorectal cancer. BMC Endocr. Disord. 20, 1–7 (2020). https://doi.org/10.1186/s12902-020-00647-9

    Article  CAS  Google Scholar 

  22. Sullivan, L.B., Gui, D.Y., van der Heiden, M.G.: Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer 16, 680–693 (2016). https://doi.org/10.1038/nrc.2016.85

    Article  CAS  PubMed  Google Scholar 

  23. Hakimi, A.A., Reznik, E., Lee, C.H., Creighton, C.J., Brannon, A.R., Luna, A., Aksoy, B.A., Liu, E.M., Shen, R., Lee, W., Chen, Y., Stirdivant, S.M., Russo, P., Chen, Y.B., Tickoo, S.K., Reuter, V.E., Cheng, E.H., Sander, C., Hsieh, J.J.: An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell 29, 104–116 (2016). https://doi.org/10.1016/j.ccell.2015.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, D., Fiske, B.P., Birsoy, K., Freinkman, E., Kami, K., Possemato, R.L., Chudnovsky, Y., Pacold, M.E., Chen, W.W., Cantor, J.R., Shelton, L.M., Gui, D.Y., Kwon, M., Ramkissoon, S.H., Ligon, K.L., Kang, S.W., Snuderl, M., vander Heiden, M.G., Sabatini, D.M.: SHMT2 drives glioma cell survival in ischaemia but imposes a dependence on glycine clearance. Nature 520, 363–367 (2015). https://doi.org/10.1038/nature14363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rabbani, N., Thornalley, P.J.: Dicarbonyl proteome and genome damage in metabolic and vascular disease. https://pubmed.ncbi.nlm.nih.gov/24646255/. (2014)

  26. He, R.-Q., Yang, M.-D., Zheng, X., Zhou, J.-X.: Isolation and some properties of glycated D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. (1995)

  27. Morgan, P.E., Dean, R.T., Davies, M.J.: Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch. Biochem. Biophys. 403, 259–269 (2002). https://doi.org/10.1016/S0003-9861(02)00222-9

    Article  CAS  PubMed  Google Scholar 

  28. Bellier, J., Nokin, M.J., Lardé, E., Karoyan, P., Peulen, O., Castronovo, V., Bellahcène, A.: Methylglyoxal, a potent inducer of AGEs, connects between diabetes and cancer. https://pubmed.ncbi.nlm.nih.gov/30664892/. (2019)

  29. Moraru, A., Wiederstein, J., Pfaff, D., Fleming, T., Miller, A.K., Nawroth, P., Teleman, A.A.: Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. Cell Metab. 27, 926-934.e8 (2018). https://doi.org/10.1016/j.cmet.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Bian, Y., Yu, Y., Wang, S., Li, L.: Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem. Biophys. Res. Commun. 463, 612–617 (2015). https://doi.org/10.1016/J.BBRC.2015.05.108

  31. van Heijst, J.W.J., Niessen, H.W.M., Musters, R.J., van Hinsbergh, V.W.M., Hoekman, K., Schalkwijk, C.G.: Argpyrimidine-modified Heat Shock Protein 27 in human non-small cell lung cancer: A possible mechanism for evasion of apoptosis. Cancer Lett. 241, 309–319 (2006). https://doi.org/10.1016/J.CANLET.2005.10.042

    Article  PubMed  Google Scholar 

  32. GLO1 overexpression in human malignant melanoma: Wb, B., Cm, C., K, U., AS, B., GT, W. Melanoma Res. 20, 85–96 (2010). https://doi.org/10.1097/CMR.0B013E3283364903

    Article  Google Scholar 

  33. Oya-Ito Tomoko, T., Naito, Y., Takagi, T., Handa, O., Matsui, H., Yamada, M., Shima, K., Yoshikawa, T.: Heat-shock protein 27 (Hsp27) as a target of methylglyoxal in gastrointestinal cancer. Biochimica et Biophysica Acta - Molecular Basis of Disease. 1812, 769–781 (2011). https://doi.org/10.1016/j.bbadis.2011.03.017

    Article  CAS  Google Scholar 

  34. Nokin, M.J., Durieux, F., Peixoto, P., Chiavarina, B., Peulen, O., Blomme, A., Turtoi, A., Costanza, B., Smargiasso, N., Baiwir, D., Scheijen, J.L., Schalkwijk, C.G., Leenders, J., de Tullio, P., Bianchi, E., Thiry, M., Uchida, K., Spiegel, D.A., Cochrane, J.R., Hutton, C.A., de Pauw, E., Delvenne, P., Belpomme, D., Castronovo, V., Bellahcène, A.: Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP- mediated tumor growth and metastasis. eLife. 5, (2016). https://doi.org/10.7554/eLife.19375

  35. Sun, F., Suttapitugsakul, S., Xiao, H., Wu, R.: Comprehensive Analysis of Protein Glycation Reveals Its Potential Impacts on Protein Degradation and Gene Expression in Human Cells. J. Am. Soc. Mass Spectrom. 30, 2480–2490 (2019). https://doi.org/10.1007/s13361-019-02197-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimomoto, T., Luo, Y., Ohmori, H., Chihara, Y., Fujii, K., Sasahira, T., Denda, A., Kuniyasu, H.: Advanced glycation end products (AGE) induce the receptor for AGE in the colonic mucosa of azoxymethane-injected Fischer 344 rats fed with a high-linoleic acid and high-glucose diet. J. Gastroenterol. 47, 1073–1083 (2012). https://doi.org/10.1007/s00535-012-0572-5

    Article  CAS  PubMed  Google Scholar 

  37. Thimmulappa, R.K., Mai, K.H., Srisuma, S., Kensler, T.W., Yamamoto, M., Biswal, S.: Identification of Nrf2-regulated Genes Induced by the Chemopreventive Agent Sulforaphane by Oligonucleotide Microarray 1. (2002)

  38. Fu, J., Xiong, Z., Huang, C., Li, J., Yang, W., Han, Y., Paiboonrungruan, C., Major, M.B., Chen, K.N., Kang, X., Chen, X.: Hyperactivity of the transcription factor Nrf2 causes metabolic reprogramming in mouse esophagus. J. Biol. Chem. 294, 327–340 (2019). https://doi.org/10.1074/jbc.RA118.005963

    Article  CAS  PubMed  Google Scholar 

  39. Isoe, T., Makino, Y., Mizumoto, K., Sakagami, H., Fujita, Y., Honjo, J., Takiyama, Y., Itoh, H., Haneda, M.: High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. (2010). https://doi.org/10.1038/ki.2010.99

  40. Li, J., Zhao, S.Z., Wang, P.P., Yu, S.P., Zheng, Z., Xu, X.: Calcium mediates high glucose-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells through CaMKII-CREB pathway. Acta Pharmacol. Sin. 33, 1030–1036 (2012). https://doi.org/10.1038/aps.2012.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gordan, J.D., Bertout, J.A., Hu, C.J., Diehl, J.A., Simon, M.C.: HIF-2α Promotes Hypoxic Cell Proliferation by Enhancing c-Myc Transcriptional Activity. Cancer Cell 11, 335–347 (2007). https://doi.org/10.1016/j.ccr.2007.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, J., Zeller, K.I., Wang, Y., Jegga, A.G., Aronow, B.J., O’Donnell, K.A., Dang, C.V.: Evaluation of Myc E-Box Phylogenetic Footprints in Glycolytic Genes by Chromatin Immunoprecipitation Assays. Mol. Cell. Biol. 24, 5923–5936 (2004). https://doi.org/10.1128/mcb.24.13.5923-5936.2004

  43. Osthus, R.C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L.A., Dang, C.V.: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800 (2000). https://doi.org/10.1074/jbc.C000023200

  44. Gan, L., Xiu, R., Ren, P., Yue, M., Su, H., Guo, G., Xiao, D., Yu, J., Jiang, H., Liu, H., Hu, G., Qing, G.: Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene 35, 3037–3048 (2016). https://doi.org/10.1038/onc.2015.360

    Article  CAS  PubMed  Google Scholar 

  45. Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T., Castegna, A.: The metabolic signature of macrophage responses. Front. Immunol. 10, 1–16 (2019). https://doi.org/10.3389/fimmu.2019.01462

    Article  CAS  Google Scholar 

  46. Li, D., Ma, S., Ellis, E.M.: Nrf2-mediated adaptive response to methyl glyoxal in HepG2 cells involves the induction of AKR7A2. Chem. Biol. Interact. 234, 366–371 (2015). https://doi.org/10.1016/j.cbi.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  47. Zemva, J., Fink, C.A., Fleming, T.H., Schmidt, L., Loft, A., Herzig, S., Knieß, R.A., Mayer, M., Bukau, B., Nawroth, P.P., Tyedmers, J.: Hormesis enables cells to handle accumulating toxic metabolites during increased energy flux. Redox Biol. 13, 674–686 (2017). https://doi.org/10.1016/j.redox.2017.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bollong, M.J., Lee, G., Coukos, J.S., Yun, H., Zambaldo, C., Chang, J.W., Chin, E.N., Ahmad, I., Chatterjee, A.K., Lairson, L.L., Schultz, P.G., Moellering, R.E.: A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2 signalling. Nature 562, 600–604 (2018). https://doi.org/10.1038/s41586-018-0622-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chuah, Y.K., Basir, R., Talib, H., Tie, T.H., Nordin, N.: Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int. J. Inflamm. 2013, (2013). https://doi.org/10.1155/2013/403460

  50. Lin, L., Park, S., Lakatta, E.G.: RAGE signaling in inflammation and arterial aging. Front. Biosci. 14, 1403–1413 (2009). https://doi.org/10.2741/3315

    Article  CAS  PubMed Central  Google Scholar 

  51. Sakasai-Sakai, A., Takeuchi, M., Takata, T.: Intracellular toxic advanced glycation end-products promote the production of reactive oxygen species in HEPG2 cells. Int. J. Mol. Sci. 21, 1–14 (2020). https://doi.org/10.3390/ijms21144861

    Article  CAS  Google Scholar 

  52. Nedić, O., Rattan, S.I.S., Grune, T., Trougakos, I.P.: Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radical Res. 47, 28–38 (2013). https://doi.org/10.3109/10715762.2013.806798

    Article  CAS  Google Scholar 

  53. Rojas, A., Figueroa, H., Morales, E.: Fueling inflammation at tumor microenvironment: The role of multiligand/rage axis. Carcinogenesis 31, 334–341 (2010). https://doi.org/10.1093/carcin/bgp322

    Article  CAS  PubMed  Google Scholar 

  54. Kang, R., Tang, D., Schapiro, N.E., Livesey, K.M., Farkas, A., Loughran, P., Bierhaus, A., Lotze, M.T., Zeh, H.J.: The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ. 17, 666–676 (2010). https://doi.org/10.1038/cdd.2009.149

    Article  CAS  PubMed  Google Scholar 

  55. Petriv, N., Neubert, L., Vatashchuk, M., Timrott, K., Suo, H., Hochnadel, I., Huber, R., Petzold, C., Hrushchenko, A., Yatsenko, A.S., Shcherbata, H.R., Wedemeyer, H., Lichtinghagen, R., Falfushynska, H., Lushchak, V., Manns, M.P., Bantel, H., Semchyshyn, H., Yevsa, T.: Increase of α-dicarbonyls in liver and receptor for advanced glycation end products on immune cells are linked to nonalcoholic fatty liver disease and liver cancer. OncoImmunology 10, (2021). https://doi.org/10.1080/2162402X.2021.1874159

  56. Rosenstock, P., Bezold, V., Bork, K., Scheffler, J., Horstkorte, R.: Glycation interferes with natural killer cell function. Mech. Ageing Dev. 178, 64–71 (2019). https://doi.org/10.1016/j.mad.2019.01.006

    Article  CAS  PubMed  Google Scholar 

  57. Grivennikov, S.I., Karin, M.: Inflammation and oncogenesis: a vicious connection. Curr. Opin. Genet. Dev. 20, 65–71 (2010). https://doi.org/10.1016/j.gde.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  58. Niu, G., Wright, K.L., Ma, Y., Wright, G.M., Huang, M., Irby, R., Briggs, J., Karras, J., Cress, W.D., Pardoll, D., Jove, R., Chen, J., Yu, H.: Role of Stat3 in regulating p53 expression and function. Mol. Cell. Biol. 25, 7432–7440 (2005). https://doi.org/10.1128/MCB.25.17.7432-7440.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tergaonkar, V., Pando, M., Vafa, O., Wahl, G., Verma, I.: p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493–503 (2002). https://doi.org/10.1016/s1535-6108(02)00068-5

    Article  CAS  PubMed  Google Scholar 

  60. Koh, M.Y., Powis, G.: Passing the baton: The HIF switch. http://www.ncbi.nlm.nih.gov/pubmed/22818162. (2012)

  61. Wang, M., Kirk, J.S., Venkataraman, S., Domann, F.E., Zhang, H.J., Schafer, F.Q., Flanagan, S.W., Weydert, C.J., Spitz, D.R., Buettner, G.R., Oberley, L.W.: Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1α and vascular endothelial growth factor. Oncogene 24, 8154–8166 (2005). https://doi.org/10.1038/sj.onc.1208986

    Article  CAS  PubMed  Google Scholar 

  62. Xu, Y., Toure, F., Qu, W., Lin, L., Song, F., Shen, X., Rosario, R., Garcia, J., Schmidt, A.M., Yan, S.F.: Advanced glycation end product (AGE)-receptor for age (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. J. Biol. Chem. 285, 23233–23240 (2010). https://doi.org/10.1074/jbc.M110.117457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masson, N., Ratcliffe, P.J.: Hypoxia signaling pathways in cancer metabolism: The importance of co-selecting interconnected physiological pathways. (2014)

  64. Fuhrmann, D.C., Brüne, B.: Mitochondrial composition and function under the control of hypoxia. Redox Biol. 12, 208–215 (2017). https://doi.org/10.1016/j.redox.2017.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Patel, S.H., Yue, F., Saw, S.K., Foguth, R., Cannon, J.R., Shannahan, J.H., Kuang, S., Sabbaghi, A., Carroll, C.C.: Advanced Glycation End-Products Suppress Mitochondrial Function and Proliferative Capacity of Achilles Tendon-Derived Fibroblasts. Sci. Rep. 9, 1–17 (2019). https://doi.org/10.1038/s41598-019-49062-8

    Article  CAS  Google Scholar 

  66. Bonner, M.R., Shen, M., Liu, C.S., DiVita, M., He, X., Lan, Q.: Mitochondrial DNA content and lung cancer risk in Xuan Wei. China. Lung Cancer. 63, 331–334 (2009). https://doi.org/10.1016/j.lungcan.2008.06.012

    Article  PubMed  Google Scholar 

  67. Dioufa, N., Kassi, E., Papavassiliou, A.G., Kiaris, H.: Atypical induction of the unfolded protein response by mifepristone. Endocrine 38, 167–173 (2010). https://doi.org/10.1007/s12020-010-9362-0

    Article  CAS  PubMed  Google Scholar 

  68. Healy, S.J.M., Gorman, A.M., Mousavi-Shafaei, P., Gupta, S., Samali, A.: Targeting the endoplasmic reticulum-stress response as an anticancer strategy. http://www.ncbi.nlm.nih.gov/pubmed/19835867. (2009)

  69. Koong, A.C., Chauhan, V., Romero-Ramirez, L.: Targeting XBP-1 as a novel anti-cancer strategy. http://www.ncbi.nlm.nih.gov/pubmed/16861911. (2006)

  70. Hotamisligil, G.S.: Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. http://www.ncbi.nlm.nih.gov/pubmed/20303879. (2010)

  71. Piperi, C., Adamopoulos, C., Dalagiorgou, G., Diamanti-Kandarakis, E., Papavassiliou, A.G.: Crosstalk between advanced glycation and endoplasmic reticulum stress: Emerging therapeutic targeting for metabolic diseases. J. Clin. Endocrinol. Metab. 97, 2231–2242 (2012). https://doi.org/10.1210/jc.2011-3408

    Article  CAS  PubMed  Google Scholar 

  72. Rasheed, Z., Akhtar, N., Haqqi, T.M.: Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology (Oxford) 50, 838–851 (2011). https://doi.org/10.1093/rheumatology/keq380

    Article  CAS  Google Scholar 

  73. Logsdon, C., Fuentes, M., Huang, E., Arumugam, T.: RAGE and RAGE Ligands in Cancer. Curr. Mol. Med. 7, 777–789 (2007). https://doi.org/10.2174/156652407783220697

    Article  CAS  PubMed  Google Scholar 

  74. Missiroli, S., Patergnani, S., Caroccia, N., Pedriali, G., Perrone, M., Previati, M., Wieckowski, M.R., Giorgi, C.: Mitochondria-associated membranes (MAMs) and inflammation, (2018)

  75. Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Hofer, A.M., Horng, T.: Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. U.S.A. 109, 11282–11287 (2012). https://doi.org/10.1073/pnas.1117765109

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fallah, A., Sadeghinia, A., Kahroba, H., Samadi, A., Heidari, H.R., Bradaran, B., Zeinali, S., Molavi, O.: Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. (2019)

  77. Muoio, M.G., Talia, M., Lappano, R., Sims, A.H., Vella, V., Cirillo, F., Manzella, L., Giuliano, M., Maggiolini, M., Belfiore, A., de Francesco, E.M.: Activation of the s100a7/rage pathway by igf-1 contributes to angiogenesis in breast cancer. Cancers 13, 1–19 (2021). https://doi.org/10.3390/cancers13040621

    Article  CAS  Google Scholar 

  78. Okamoto, T., Yamagishi, S.I., Inagaki, Y., Amano, S., Koga, K., Abe, R., Takeuchi, M., Ohno, S., Yoshimura, A., Makita, Z.: Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. The FASEB Journal : official publication of the Federation of American Societies for Experimental Biology 16, 1928–1930 (2002). https://doi.org/10.1096/fj.02-0030fje

  79. Duyndam, M.C.A., Hulscher, T.M., Fontijn, D., Pinedo, H.M., Boven, E.: Induction of Vascular Endothelial Growth Factor Expression and Hypoxia-inducible Factor 1α Protein by the Oxidative Stressor Arsenite. J. Biol. Chem. 276, 48066–48076 (2001). https://doi.org/10.1074/jbc.M106282200

    Article  CAS  PubMed  Google Scholar 

  80. Yamagishi, S.I., Amano, S., Inagaki, Y., Okamoto, T., Koga, K., Makita, Z., Sasaki, N., Yamamoto, H., Takeuchi, M.: Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem. Biophys. Res. Commun. 290, 973–978 (2002). https://doi.org/10.1006/bbrc.2001.6312

  81. Liang, H., Zhong, Y., Zhou, S., Peng, L.: Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Lett. 313, 91–98 (2011). https://doi.org/10.1016/j.canlet.2011.08.028

    Article  CAS  PubMed  Google Scholar 

  82. Mathew, R., Karantza-Wadsworth, V., White, E.: Role of autophagy in cancer. (2007)

  83. Li, W., Saud, S.M., Young, M.R., Chen, G., Hua, B.: Targeting AMPK for cancer prevention and treatment. 6, (2015)

  84. Li, J., Wu, P.W., Zhou, Y., Dai, B., Zhang, P.F., Zhang, Y.H., Liu, Y., Shi, X.L.: Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy article. Cell Death Dis 9, (2018). https://doi.org/10.1038/s41419-018-0329-z

  85. Verma, N., Manna, S.K.: Advanced glycation end products (AGE) potently induce autophagy through activation of RAF protein kinase and nuclear factor κB (NF-κB). J. Biol. Chem. 291, 1481–1491 (2016). https://doi.org/10.1074/jbc.M115.667576

    Article  CAS  PubMed  Google Scholar 

  86. Z, Z., H, W., L, Z., X, M., J, H., K, H.: Receptor for advanced glycation end product blockade enhances the chemotherapeutic effect of cisplatin in tongue squamous cell carcinoma by reducing autophagy and modulating the WNT pathway. Anti-cancer Drugs 28, 187–196 (2017). https://doi.org/10.1097/CAD.0000000000000451

  87. Swami, P., O’connell, K.A., Thiyagarajan, S., Crawford, A., Patil, P., Radhakrishnan, P., Shin, S., Caffrey, T.C., Grunkemeyer, J., Neville, T., Vetter, S.W., Hollingsworth, M.A., Leclerc, E.: Inhibition of the receptor for advanced glycation end products enhances the cytotoxic effect of gemcitabine in murine pancreatic tumors. Biomolecules 11, (2021). https://doi.org/10.3390/biom11040526

  88. Yuan, X., Wang, B., Yang, L., Zhang, Y.: The role of ROS-induced autophagy in hepatocellular carcinoma. https://pubmed.ncbi.nlm.nih.gov/29544680/. (2018)

  89. Zheng, Q., Omans, N.D., Leicher, R., Osunsade, A., Agustinus, A.S., Finkin-Groner, E., D’Ambrosio, H., Liu, B., Chandarlapaty, S., Liu, S., David, Y.: Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat. Commun. 10, (2019). https://doi.org/10.1038/s41467-019-09192-z

  90. Guedes, S., Vitorino, R., Domingues, M.R.M., Amado, F., Domingues, P.: Glycation and oxidation of histones H2B and H1: In vitro study and characterization by mass spectrometry. Anal. Bioanal. Chem. 399, 3529–3539 (2011). https://doi.org/10.1007/s00216-011-4679-y

    Article  CAS  PubMed  Google Scholar 

  91. Diao, X.: Histone glycation: Linking metabolic perturbation with epigenetic misregulation in cancer. AIMS Genetics. 6, 14–16 (2019). https://doi.org/10.3934/genet.2019.2.14

    Article  PubMed  PubMed Central  Google Scholar 

  92. Brasacchio, D., Okabe, J., Tikellis, C., Balcerczyk, A., George, P., Baker, E.K., Calkin, A.C., Brownlee, M., Cooper, M.E., El-Osta, A.: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58, 1229–1236 (2009). https://doi.org/10.2337/db08-1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sheppard, K.-A., Rose, D.W., Haque, Z.K., Kurokawa, R., McInerney, E., Westin, S., Thanos, D., Rosenfeld, M.G., Glass, C.K., Collins, T.: Transcriptional Activation by NF-κB Requires Multiple Coactivators. Mol. Cell. Biol. 19, 6367–6378 (1999). https://doi.org/10.1128/mcb.19.9.6367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brings, S., Fleming, T., Freichel, M., Muckenthaler, M.U., Herzig, S., Nawroth, P.P.: Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention, /pmc/articles/PMC5454897/. (2017)

  95. Scumaci, D., Olivo, E., Fiumara, C.V., la Chimia, M., de Angelis, M.T., Mauro, S., Costa, G., Ambrosio, F.A., Alcaro, S., Agosti, V., Costanzo, F.S., Cuda, G.: DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation. Cells 9, (2020). https://doi.org/10.3390/cells9091968

  96. Zhang, M., Li, Y., Rao, P., Huang, K., Luo, D., Cai, X., Xiao, J.: Blockade of receptors of advanced glycation end products ameliorates diabetic osteogenesis of adipose-derived stem cells through DNA methylation and Wnt signalling pathway. Cell Prolif. 51, 1–11 (2018). https://doi.org/10.1111/cpr.12471

    Article  CAS  Google Scholar 

  97. Bröske, A.M., Vockentanz, L., Kharazi, S., Huska, M.R., Mancini, E., Scheller, M., Kuhl, C., Enns, A., Prinz, M., Jaenisch, R., Nerlov, C., Leutz, A., Andrade-Navarro, M.A., Jacobsen, S.E.W., Rosenbauer, F.: DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009). https://doi.org/10.1038/ng.463

    Article  CAS  PubMed  Google Scholar 

  98. Liu, C.C., Lin, J.H., Hsu, T.W., Su, K., Li, A.F.Y., Hsu, H.S., Hung, S.C.: IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int. J. Cancer 136, 547–559 (2015). https://doi.org/10.1002/ijc.29033

    Article  CAS  PubMed  Google Scholar 

  99. Morita, R., Hirohashi, Y., Suzuki, H., Takahashi, A., Tamura, Y., Kanaseki, T., Asanuma, H., Inoda, S., Kondo, T., Hashino, S., Hasegawa, T., Tokino, T., Toyota, M., Asaka, M., Torigoe, T., Sato, N.: DNA methyltransferase 1 is essential for initiation of the colon cancers. Exp. Mol. Pathol. 94, 322–329 (2013). https://doi.org/10.1016/j.yexmp.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  100. He, J., Xu, Q., Jing, Y., Agani, F., Qian, X., Carpenter, R., Li, Q., Wang, X.R., Peiper, S.S., Lu, Z., Liu, L.Z., Jiang, B.H.: Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep. 13, 1116–1122 (2012). https://doi.org/10.1038/embor.2012.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, L.N., Wang, X.X., Wang, Z., Li, K.Y., Xu, B.H., Zhang, J.: Berberine improves advanced glycation end products-induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β-catenin pathway. Mol. Med. Rep. 19, 5440–5452 (2019). https://doi.org/10.3892/mmr.2019.10193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Menini, S., Iacobini, C., de Latouliere, L., Manni, I., Ionta, V., Blasetti Fantauzzi, C., Pesce, C., Cappello, P., Novelli, F., Piaggio, G., Pugliese, G.: The advanced glycation end-product Nϵ-carboxymethyllysine promotes progression of pancreatic cancer: implications for diabetes-associated risk and its prevention. Journal of Pathology. 245, 197–208 (2018). https://doi.org/10.1002/path.5072

    Article  CAS  Google Scholar 

  103. Geicu, O.I., Stanca, L., Voicu, S.N., Dinischiotu, A., Bilteanu, L., Serban, A.I., Calu, V.: Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model. Sci. Rep. 10, (2020). https://doi.org/10.1038/s41598-020-59623-x

  104. Peterson, L.L., Park, S., Park, Y., Colditz, G.A., Anbardar, N., Turner, D.P.: Dietary advanced glycation end products and the risk of postmenopausal breast cancer in the National Institutes of Health-AARP Diet and Health Study. Cancer 126, 2648–2657 (2020). https://doi.org/10.1002/cncr.32798

    Article  CAS  PubMed  Google Scholar 

  105. Roberts, M.J., Wondrak, G.T., Laurean, D.C., Jacobson, M.K., Jacobson, E.L.: DNA damage by carbonyl stress in human skin cells. Mutat. Res. 522, 45–56 (2003). https://doi.org/10.1016/s0027-5107(02)00232-4

    Article  CAS  PubMed  Google Scholar 

  106. Kuniyasu, H., Oue, N., Wakikawa, A., Shigeishi, H., Matsutani, N., Kuraoka, K., Ito, R., Yokozaki, H., Yasui, W.: Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J. Pathol. 196, 163–170 (2002). https://doi.org/10.1002/PATH.1031

    Article  CAS  PubMed  Google Scholar 

  107. Nankali, M., Karimi, J., Goodarzi, M.T., Saidijam, M., Khodadadi, I., Razavi, A.N.E., Rahimi, F.: Increased Expression of the Receptor for Advanced Glycation End-Products (RAGE) Is Associated with Advanced Breast Cancer Stage. Oncology Research and Treatment. 39, 622–628 (2016). https://doi.org/10.1159/000449326

    Article  CAS  PubMed  Google Scholar 

  108. Kuniyasu, H., Chihara, Y., Kondo, H.: Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int. J. Cancer 104, 722–727 (2003). https://doi.org/10.1002/ijc.11016

    Article  CAS  PubMed  Google Scholar 

  109. Moy, K.A., Jiao, L., Freedman, N.D., Weinstein, S.J., Sinha, R., Virtamo, J., Albanes, D., Stolzenberg-Solomon, R.Z.: Soluble receptor for advanced glycation end products and risk of liver cancer. Hepatology 57, 2338–2345 (2013). https://doi.org/10.1002/hep.26264

    Article  CAS  PubMed  Google Scholar 

  110. Konopka, C.J., Woźniak, M., Hedhli, J., Siekierzycka, A., Skokowski, J., Pęksa, R., Matuszewski, M., Munirathinam, G., Kajdacsy-Balla, A., Dobrucki, I.T., Kalinowski, L., Dobrucki, L.W.: Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging (2020). https://doi.org/10.1007/s00259-020-04721-1

    Article  PubMed  Google Scholar 

  111. Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G.E., Vlassara, H.: Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 110, 911-916.e12 (2010). https://doi.org/10.1016/j.jada.2010.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  112. Peppa, M., Uribarri, J., Cai, W., Lu, M., Vlassara, H.: Glycoxidation and Inflammation in Renal Failure Patients. Am. J. Kidney Dis. 43, 690–695 (2004). https://doi.org/10.1053/j.ajkd.2003.11.022

    Article  CAS  PubMed  Google Scholar 

  113. Vlassara, H., Cai, W., Goodman, S., Pyzik, R., Yong, A., Chen, X., Zhu, L., Neade, T., Beeri, M., Silverman, J.M., Ferrucci, L., Tansman, L., Striker, G.E., Uribarri, J.: Protection against loss of innate defenses in adulthood by low advanced glycation end products (AGE) intake: Role of the antiinflammatory age receptor-1. J. Clin. Endocrinol. Metab. 94, 4483–4491 (2009). https://doi.org/10.1210/jc.2009-0089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chiappalupi, S., Sorci, G., Vukasinovic, A., Salvadori, L., Sagheddu, R., Coletti, D., Renga, G., Romani, L., Donato, R., Riuzzi, F.: Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. J. Cachexia. Sarcopenia Muscle (2020). https://doi.org/10.1002/jcsm.12561

  115. Nagai, R., Murray, D.B., Metz, T.O., Baynes, J.W.: Chelation: A fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 61, 549–559 (2012). https://doi.org/10.2337/DB11-1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jafarnejad, A., Bathaie, S.Z., Nakhjavani, M., Hassan, M.Z.: Effect of spermine on lipid profile and HDL functionality in the streptozotocin-induced diabetic rat model. Life Sci. 82, 301–307 (2008). https://doi.org/10.1016/j.lfs.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  117. Kim, J., Jeong, I.H., Kim, C.S., Lee, Y.M., Kim, J.M., Kim, J.S.: Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch. Pharmacal Res. 34, 495–500 (2011). https://doi.org/10.1007/s12272-011-0319-5

    Article  CAS  Google Scholar 

  118. Boor, P., Celec, P., Behuliak, M., Grančič, P., Kebis, A., Kukan, M., Pronayová, N., Liptaj, T., Ostendorf, T., Šebeková, K.: Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats. Metab. Clin. Exp. 58, 1669–1677 (2009). https://doi.org/10.1016/j.metabol.2009.05.025

  119. Delbin, M.A., Davel, A.P.C., Couto, G.K., de Araújo, G.G., Rossoni, L.V., Antunes, E., Zanesco, A.: Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats. PLoS ONE 7, e53318 (2012). https://doi.org/10.1371/journal.pone.0053318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Macías-Cervantes, M.H., Rodríguez-Soto, J.M.D., Uribarri, J., Díaz-Cisneros, F.J., Cai, W., Garay-Sevilla, M.E.: Effect of an advanced glycation end product-restricted diet and exercise on metabolic parameters in adult overweight men. Nutrition 31, 446–451 (2015). https://doi.org/10.1016/j.nut.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  121. Hsu, Y.H., Chen, S.Y., Wang, S.Y., Lin, J.A., Yen, G.C.: Pterostilbene enhances cytotoxicity and chemosensitivity in human pancreatic cancer cells. Biomolecules 10, (2020). https://doi.org/10.3390/biom10050709

  122. Lin, J.H., Chen, S.Y., Lu, C.C., Lin, J.A., Yen, G.C.: Ursolic acid promotes apoptosis, autophagy, and chemosensitivity in gemcitabine-resistant human pancreatic cancer cells. Phytother. Res. (2020). https://doi.org/10.1002/ptr.6669

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lan, C.Y., Chen, S.Y., Kuo, C.W., Lu, C.C., Yen, G.C.: Quercetin facilitates cell death and chemosensitivity through RAGE/PI3K/AKT/mTOR axis in human pancreatic cancer cells. J. Food Drug Anal. 27, 887–896 (2019). https://doi.org/10.1016/j.jfda.2019.07.001

    Article  CAS  PubMed  Google Scholar 

  124. Guzmán, E.A., Pitts, T.P., Diaz, M.C., Wright, A.E.: The marine natural product Scalarin inhibits the receptor for advanced glycation end products (RAGE) and autophagy in the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Invest. New Drugs 37, 262–270 (2019). https://doi.org/10.1007/s10637-018-0635-4

    Article  CAS  PubMed  Google Scholar 

  125. Liu, J., Huang, Y., Liu, Y., Chen, Y.: Irisin enhances doxorubicin-induced cell apoptosis in pancreatic cancer by inhibiting the PI3K/Akt/NF-kB pathway. Med. Sci. Monit. 25, 6085–6096 (2019). https://doi.org/10.12659/MSM.917625

  126. Nakamara, N., Matsui, T., Ishibashi, Y., Sotokawauchi, A., Fukami, K., Higashimoto, Y., Yamagishi, S.I.: RAGE-aptamer attenuates the growth and liver metastasis of malignant melanoma in nude mice. Mol. Med. 23, 295–306 (2017). https://doi.org/10.2119/molmed.2017.00099

    Article  CAS  PubMed Central  Google Scholar 

  127. Ojima, A., Matsui, T., Maeda, S., Takeuchi, M., Inoue, H., Higashimoto, Y., Yamagishi, S.I.: DNA aptamer raised against advanced glycation end products inhibits melanoma growth in nude mice. Lab. Invest. 94, 422–429 (2014). https://doi.org/10.1038/labinvest.2014.5

    Article  CAS  PubMed  Google Scholar 

  128. Matsushita, S., Tada, K.I., Kawahara, K.I., Kawai, K., Hashiguchi, T., Maruyama, I., Kanekura, T.: Advanced malignant melanoma responds to Prunus mume sieb. Et Zucc (Ume) extract: Case report and in vitro study. Exp. Ther. Med. 1, 569–574 (2010). https://doi.org/10.3892/etm_00000089

  129. Huang, H., Li, L., Zhang, H., Wei, A.: Papaverine selectively inhibits human prostate cancer cell ( PC-3 ) growth by inducing mitochondrial mediated apoptosis, cell cycle arrest and downregulation of NF-κB / PI3K / Akt signalling pathway. 22, 112–118 (2017)

  130. Liu, Y., Gao, X., Deeb, D., Zhang, Y., Shaw, J., Valeriote, F.A., Gautam, S.C.: Mycotoxinverrucarin A inhibits proliferation and induces apoptosis in prostate cancer cells by inhibiting prosurvivalAkt/NF-kB/mTOR signaling. J. Exp. Ther. Oncol. 11, 251–260 (2016)

  131. Hatashita, M., Taniguchi, M., Baba, K., Koshiba, K., Sato, T., Jujo, Y., Suzuki, R., Hayashi, S.: Sinodielide A exerts thermosensitizing effects and induces apoptosis and G2/M cell cycle arrest in DU145 human prostate cancer cells via the Ras/Raf/MAPK and PI3K/Akt signaling pathways. Int. J. Mol. Med. 33, 406–414 (2014). https://doi.org/10.3892/ijmm.2013.1568

    Article  CAS  PubMed  Google Scholar 

  132. Gao, X., Liu, Y., D., D.: Anticancer activity of pristimerin in ovarian carcinoma cells is mediated through the inhibition of prosurvival Akt/NF-κB/mTOR Signaling. J. Exp. Ther. Oncol. 10, 275–283 (2014)

  133. Li, M.L., Wang, X.F., Tan, Z.J., Dong, P., Gu, J., Lu, J.H., Wu, X.S., Zhang, L., Ding, Q.C., Wu, W.G., Rao, L.H., Mu, J.S., Yang, J.H., Weng, H., Ding, Q., Zhang, W.J., Chen, L., Liu, Y.: bin: Ethyl pyruvate administration suppresses growth and invasion of gallbladder cancer cells via downregulation of HMGB1-RAGE axis. Int. J. Immunopathol. Pharmacol. 25, 955–965 (2012). https://doi.org/10.1177/039463201202500413

    Article  CAS  PubMed  Google Scholar 

  134. Takada M., Ku Y., Toyama H., Yasuyuki Suzuki, Y.K.: Suppressive effects of tea polyphenol and conformational changes with receptor for advanced glycation end products (RAGE) expression in human hepatoma cells - PubMed. Hepatogastroenterology 49(46), 928–31 (2002)

  135. Sakuraoka, Y., Sawada, T., Okada, T., Shiraki, T., Miura, Y., Hiraishi, K., Ohsawa, T., Adachi, M., Takino, J.I., Takeuchi, M., Kubota, K.: MK615 decreases RAGE expression and inhibits tage-induced proliferation in hepatocellular carcinoma cells. World J. Gastroenterol. 16, 5334–5341 (2010). https://doi.org/10.3748/wjg.v16.i42.5334

  136. Deperalta, D.K., Wei, L., Ghoshal, S., Schmidt, B., Lauwers, G.Y., Lanuti, M., Chung, R.T., Tanabe, K.K., Fuchs, B.C.: Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 122, 1216–1227 (2016). https://doi.org/10.1002/cncr.29912

    Article  CAS  PubMed  Google Scholar 

  137. Yang, Y., Zhao, L.H., Huang, B., Wang, R.Y., Yuan, S.X., Tao, Q.F., Xu, Y., Sun, H.Y., Lin, C., Zhou, W.P.: Pioglitazone, a PPARγ agonist, inhibits growth and invasion of human hepatocellular carcinoma via blockade of the rage signaling. Mol. Carcinog. 54, 1584–1595 (2015). https://doi.org/10.1002/mc.22231

    Article  CAS  PubMed  Google Scholar 

  138. Cheng, P., Dai, W., Wang, F., Lu, J., Shen, M., Chen, K., Li, J., Zhang, Y., Wang, C., Yang, J., Zhu, R., Zhang, H., Zheng, Y., Guo, C.Y., Xu, L.: Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1-RAGE and AKT pathways. Biochem. Biophys. Res. Commun. 443, 1162–1168 (2014). https://doi.org/10.1016/j.bbrc.2013.12.064

    Article  CAS  PubMed  Google Scholar 

  139. Song, T.Y., Yang, N.C., Chen, C.L., Thi, T.L.V.: Protective effects and possible mechanisms of ergothioneine and hispidin against methylglyoxal-induced injuries in rat pheochromocytoma cells. Oxidative Med. Cell. Longev. 2017, (2017). https://doi.org/10.1155/2017/4824371

  140. Jing, R., Chen, W., Wang, H., Ju, S., Cong, H., Sun, B., Jin, Q., Chu, S., Xu, L., Cui, M.: Plasma miR-185 is decreased in patients with esophageal squamous cell carcinoma and might suppress tumor migration and invasion by targeting RAGE. American Journal of Physiology - Gastrointestinal and Liver Physiology. 309, G719–G729 (2015). https://doi.org/10.1152/ajpgi.00078.2015

    Article  CAS  PubMed  Google Scholar 

  141. Tian, F., Fan, T., Zhang, Y.: Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim. Biophys. Sin. 44, 847–855 (2012). https://doi.org/10.1093/abbs/gms074

    Article  CAS  PubMed  Google Scholar 

  142. Xu, X.C., Zhang, W.B., Li, C.X., Gao, H., Pei, Q., Cao, B.W., He, T.H.: Up-Regulation of MiR-1915 inhibits proliferation, invasion, and migration of helicobacter pylori-infected gastric cancer cells via targeting RAGE. Yonsei Med. J. 60, 38–47 (2019). https://doi.org/10.3349/ymj.2019.60.1.38

  143. Zhang, J., Zhu, J.S., Zhou, Z., Chen, W.X., Chen, N.W.: Inhibitory effects of ethyl pyruvate administration on human gastric cancer growth via regulation of the HMGB1-RAGE and Akt pathways in vitro and in vivo. (2012)

  144. Yu, L.-L., Wu, J.-G., Dai, N., Yu, H.-G., Si, J.-M.: Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol. Rep. 26, 1197–1203 (2011). https://doi.org/10.3892/or.2011.1410

    Article  CAS  PubMed  Google Scholar 

  145. El-Far, A.H.A.M., Munesue, S., Harashima, A., Sato, A., Shindo, M., Nakajima, S., Inada, M., Tanaka, M., Takeuchi, A., Tsuchiya, H., Yamamoto, H., Shaheen, H.M.E., El-Sayed, Y.S., Kawano, S., Tanuma, S.I., Yamamoto, Y.: In vitro anticancer effects of a RAGE inhibitor discovered using a structure-based drug design system. Oncol. Lett. 15, 4627–4634 (2018). https://doi.org/10.3892/ol.2018.7902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Takeuchi, A., Yamamoto, Y., Munesue, S., Harashima, A., Watanabe, T., Yonekura, H., Yamamoto, H., Tsuchiya, H.: Low molecular weight heparin suppresses receptor for advanced glycation end products-mediated expression of malignant phenotype in human fibrosarcoma cells. Cancer Sci. 104, 740–749 (2013). https://doi.org/10.1111/cas.12133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chonggao, Y.I.N., Zhang, G., Ruimei, S.U.N., Xinting, P.A.N., Wang, X., Hongli, L.I., Yunbo, S.U.N.: miR-185-5p inhibits F-actin polymerization and reverses epithelial mesenchymal transition of human breast cancer cells by modulating RAGE. Mol. Med. Rep. 18, 2621–2630 (2018). https://doi.org/10.3892/mmr.2018.9294

    Article  CAS  Google Scholar 

  148. Dhumale, S.S., Waghela, B.N., Pathak, C.: Quercetin protects necrotic insult and promotes apoptosis by attenuating the expression of RAGE and its ligand HMGB1 in human breast adenocarcinoma cells. IUBMB Life 67, 361–373 (2015). https://doi.org/10.1002/iub.1379

    Article  CAS  PubMed  Google Scholar 

  149. Ishibashi, Y., Matsui, T., Takeuchi, M., Yamagishi, S.: Metformin inhibits advanced glycation end products (AGEs)-induced growth and VEGF expression in MCF-7 breast cancer cells by suppressing AGEs receptor expression via AMP-activated protein kinase. Horm. Metab. Res. 45, 387–390 (2013). https://doi.org/10.1055/s-0032-1331204

    Article  CAS  PubMed  Google Scholar 

  150. Vinod, B.S., Antony, J., Nair, H.H., Puliyappadamba, V.T., Saikia, M., Shyam Narayanan, S., Bevin, A., John Anto, R.: Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 4, (2013). https://doi.org/10.1038/cddis.2013.26

  151. Zhang, Z., Liu, W., Zheng, Y., Jin, L., Yao, W., Gao, X.: SGP-2, an acidic polysaccharide from Sarcandra glabra, inhibits proliferation and migration of human osteosarcoma cells. Food Funct. 5, 167–175 (2014). https://doi.org/10.1039/c3fo60378d

    Article  CAS  PubMed  Google Scholar 

  152. de Bittencourt Pasquali, M.A., Gelain, D.P., Zeidán-Chuliá, F., Pires, A.S., Gasparotto, J., Terra, S.R., Moreira, J.C.F.: Vitamin A (retinol) downregulates the receptor for advanced glycation endproducts (RAGE) by oxidant-dependent activation of p38 MAPK and NF-kB in human lung cancer A549 cells. Cell. Signal. 25, 939–954 (2013). https://doi.org/10.1016/j.cellsig.2013.01.013

  153. Liu, Q., Huo, Y., Zheng, H., Zhao, J., Jia, L., Wang, P.: Ethyl pyruvate suppresses the growth, invasion and migration and induces the apoptosis of non-small cell lung cancer cells via the HMGB1/RAGE axis and the NF-κB/STAT3 pathway. Oncol. Rep. 42, 817–825 (2019). https://doi.org/10.3892/or.2019.7176

    Article  CAS  PubMed  Google Scholar 

  154. de Oliveira, M.R., Ferreira, G.C., Schuck, P.F., Dal Bosco, S.M.: Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem. Biol. Interact. 242, 396–406 (2015). https://doi.org/10.1016/j.cbi.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  155. Sreekanth, C.N., Bava, S.V., Sreekumar, E., Anto, R.J.: Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene 30, 3139–3152 (2011). https://doi.org/10.1038/onc.2011.23

  156. Wang, J., Zhong, S., Li, J., Du, W., Li, Y.: Scutellarein inhibits the development of colon cancer via CDC4-mediated RAGE ubiquitination. Int. J. Mol. Med. 45, 1059–1072 (2020). https://doi.org/10.3892/ijmm.2020.4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zheng, J., Zhu, W., He, F., Li, Z., Cai, N., Wang, H.H.: An Aptamer-Based Antagonist against the Receptor for Advanced Glycation End-Products (RAGE) Blocks Development of Colorectal Cancer. Mediat. Inflamm. 2021, (2021). https://doi.org/10.1155/2021/9958051

Download references

Acknowledgements

The authors acknowledge the Indian Council for Medical Research (ICMR), New Delhi, for providing Senior Research Fellowship to Yadav Sangeeta Muthyalaiah

Funding

No specific funding was received for writing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathy Arockiasamy.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthyalaiah, Y.S., Jonnalagadda, B., John, C.M. et al. Impact of Advanced Glycation End products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconj J 38, 717–734 (2021). https://doi.org/10.1007/s10719-021-10031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10031-x

Keywords

Navigation