Skip to main content
Log in

Degraded polysaccharides from Porphyra haitanensis: purification, physico-chemical properties, antioxidant and immunomodulatory activities

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

To explore effect of the structural properties of porphyra haitanensis polysaccharide on its biological activity, degraded porphyra polysaccharides were separated and purified by Cellulose DEAE-52 and Sephadex G-100 chromatography, obtaining three purified components (P1, P2 and P3). All the three components were sulfate polysaccharides containing the repeating units of → 3) β-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →, and → 3) β-D-galactose (1 → 4) α-L-galactose-6-S (1 →, and → 3) 6-O-methyl-β-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →. The molecular weight of the three fractions was measured to be 300.3, 130.4 and 115.1 kDa, respectively. Their antioxidant activity was investigated by the determination of the free radical scavenging effect and ferric reducing power. It was found that P1, P2 and P3 possessed marked antioxidant activity. It was also found that they appreciably enhanced the proliferation, phagocytic ability and nitric oxide secretion in RAW264.7 cells. Lower molecular weight and higher sulfate content were beneficial to bioactivities of P. haitanensis polysaccharides. Overall, P2 and P3 possess superior immuno-modulatory activity to that of P1 and PHP. Thus, the current work will provide the basis for the better utilization of P. haitanensis to develop the related functional foods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Shi, M.J., Wei, X., Xu, J., Chen, B.J., Zhao, D.Y., Cui, S., Zhou, T.: Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: preparation and in vitro antioxidant activity. Food Chem. 215, 76–83 (2017). https://doi.org/10.1016/j.foodchem.2016.07.151

    Article  CAS  PubMed  Google Scholar 

  2. Sun, Y., Zhang, M., Fang, Z.: Efficient physical extraction of active constituents from edible fungi and their potential bioactivities: a review. Trends Food Sci. Technol. 105, 468–482 (2020). https://doi.org/10.1016/j.tifs.2019.02.026

    Article  CAS  Google Scholar 

  3. Chevolot, L., Foucault, A., Chaubet, F., Kervarec, N., Sinquin, C., Fisher, A.M., Boisson-Vidal, C.: Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr. Res. 319, 154–165 (1999). https://doi.org/10.1016/s0008-6215(99)00127-5

    Article  CAS  PubMed  Google Scholar 

  4. Chen, X.Q., Xie, J.C., Huang, W., Shao, S.R., Wu, Z.Q., Wu, L., Li, Q.: Comparative analysis of physicochemical characteristics of green tea polysaccharide conjugates and its decolored fraction and their effect on HepG2 cell proliferation. Ind. Crop. Prod. 131, 243–249 (2019). https://doi.org/10.1016/j.indcrop.2019.01.061

    Article  CAS  Google Scholar 

  5. Adhikari, U., Mateu, C.G., Chattopadhyay, K., Pujol, C.A., Damonte, E.B., Ray, B.: Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67(22), 2474–2482 (2006). https://doi.org/10.1016/j.phytochem.2006.05.024

    Article  CAS  PubMed  Google Scholar 

  6. Yang, J.W., Yoon, S.Y., Oh, S.J., Kim, S.K., Kang, K.W.: Bifunctional effects of fucoidan on the expression of inducible nitric oxide synthase. Biochem. Biophys. Res. Commun. 346(1), 345–350 (2006). https://doi.org/10.1016/j.bbrc.2006.05.135

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Q., Li, N., Liu, X., Zhao, Z., Li, Z., Xu, Z.: The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 339(1), 105–111 (2004). https://doi.org/10.1016/j.carres.2003.09.015

    Article  CAS  PubMed  Google Scholar 

  8. Gong, G., Zhao, J., Wang, C., Wei, M., Dang, T., Deng, Y., Sun, J., Song, S., Huang, L., Wang, Z.: Structural characterization and antioxidant activities of the degradation products from Porphyra haitanensis polysaccharides. Process Biochem. 74, 185–193 (2018). https://doi.org/10.1016/j.procbio.2018.05.022

    Article  CAS  Google Scholar 

  9. Wang, X., Li, W., Xiao, L., Liu, C., Qi, H., Zhang, Z.: In vivo antihyperlipidemic and antioxidant activity of porphyran in hyperlipidemic mice. Carbohydr. Polym. 174, 417–420 (2017). https://doi.org/10.1016/j.carbpol.2017.06.040

    Article  CAS  PubMed  Google Scholar 

  10. Shi, C., Pan, T., Cao, M., Liu, Q., Zhang, L., Liu, G.: Suppression of Th2 immune responses by the sulfated polysaccharide from Porphyra haitanensis in tropomyosin-sensitized mice. Int. Immunopharmacol. 24(2), 211–218 (2015). https://doi.org/10.1016/j.intimp.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  11. Liu, Q.M., Xu, S.S., Li, L., Pan, T.M., Shi, C.L., Liu, H., Cao, M.J., Su, W.J., Liu, G.M.: In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydr. Polym. 165, 189–196 (2017). https://doi.org/10.1016/j.carbpol.2017.02.032

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z., Wang, X., Mo, X., Qi, H.: Degradation and the antioxidant activity of polysaccharide from Enteromorpha linza. Carbohydr. Polym. 92(2), 2084–2087 (2013). https://doi.org/10.1016/j.carbpol.2012.11.096

    Article  CAS  PubMed  Google Scholar 

  13. Li, B., Liu, S., Xing, R., Li, K., Li, R., Qin, Y., Wang, X., Wei, Z., Li, P.: Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr. Polym. 92(2), 1991–1996 (2013). https://doi.org/10.1016/j.carbpol.2012.11.088

    Article  CAS  PubMed  Google Scholar 

  14. Raoufi, N., Kadkhodaee, R., Fang, Y., Phillips, G.O.: Ultrasonic degradation of Persian gum and gum tragacanth: effect on chain conformation and molecular properties. Ultrason. Sonochem. 52, 311–317 (2019). https://doi.org/10.1016/j.ultsonch.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  15. Xu, J., Xu, L.-L., Zhou, Q.-W., Hao, S.-X., Zhou, T., Xie, H.-J.: Enhanced in vitro antioxidant activity of polysaccharides from Enteromorpha Prolifera by enzymatic degradation. J. Food Biochem. 40(3), 275–283 (2016). https://doi.org/10.1111/jfbc.12218

    Article  CAS  Google Scholar 

  16. Li, Y., Wang, J., Yu, Y., Li, X., Jiang, X., Hwang, H., Wang, P.: Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera. Carbohydr. Polym. 98(1), 988–994 (2013). https://doi.org/10.1016/j.carbpol.2013.07.016

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, H., Feng, S., Shen, S., Zhang, L., Yang, R., Zhou, Y., Ding, C.: Extraction, antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide. Carbohydr. Polyme. 96(1), 101–108 (2013). https://doi.org/10.1016/j.carbpol.2013.03.072

    Article  CAS  Google Scholar 

  18. das Chagas Faustino Alves, M.G., Dore, C.M.P.G., Castro, A.J.G., do Nascimento, M.S., Cruz, A.K.M., Soriano, E.M., Barros Benevides, N.M., Leite, E.L.: Antioxidant, cytotoxic and hemolytic effects of sulfated galactans from edible red alga Hypnea musciformis. J. Appl. Phycol. 24(5), 1217–1227 (2012). https://doi.org/10.1007/s10811-011-9763-3

    Article  CAS  Google Scholar 

  19. Wang, F., Kong, L.M., Xie, Y.Y., Wang, C., Wang, X.L., Wang, Y.B., Fu, L.L., Zhou, T.: Purification, structural characterization and biological activities of degraded polysaccharides from Porphyra yezoensis. J. Food Biochem. 45, e13661 (2021). https://doi.org/10.1111/jfbc.13661

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y.T., Huo, Y.F., Wang, F., Wang, C., Zhu, Q., Wang, Y.B., Fu, L.L., Zhou, T.: Improved antioxidant and immunomodulatory activities of enzymatically degraded Porphyra haitanensis polysaccharides. J. Food Biochem. 44(5), e13189 (2020). https://doi.org/10.1111/jfbc.13189

    Article  PubMed  Google Scholar 

  21. Xu, J., Xu, L.L., Zhou, Q.W., Hao, S.X., Zhou, T., Xie, H.J.: Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera. Int. J. Biol. Macromol. 81, 1026–1030 (2015). https://doi.org/10.1016/j.ijbiomac.2015.09.055

    Article  CAS  PubMed  Google Scholar 

  22. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  23. Bradford, M.: A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976). https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  24. Kawai, Y., Seno, N., Anno, K.: A modified method for chondrosulfatase assay. Anal. Biochem. 32, 314–321 (1969). https://doi.org/10.1016/0003-2697(69)90091-8

    Article  CAS  PubMed  Google Scholar 

  25. Qian, W.W., Yang, S.Q., Hu, S.M., Wang, X.L., Zhu, Y., Zhou, T.: Enzymatic degradation, antioxidant and immunoregulatory activities of polysaccharides from brown algae Sargassum fusiforme. J. Food Meas. Charact. 15(2), 1960–1972 (2021). https://doi.org/10.1007/s11694-020-00776-8

    Article  Google Scholar 

  26. Shao, L.L., Xu, J., Shi, M.J., Wang, X.L., Li, Y.T., Kong, L.M., Hider, R.C., Zhou, T.: Preparation, antioxidant and antimicrobial evaluation of hydroxamated degraded polysaccharides from Enteromorpha prolifera. Food Chem. 237, 481–487 (2017). https://doi.org/10.1016/j.foodchem.2017.05.119

    Article  CAS  PubMed  Google Scholar 

  27. Chen, B.J., Shi, M.J., Cui, S., Hao, S.X., Hider, R.C., Zhou, T.: Improved antioxidant and anti-tyrosinase activity of polysaccharide from Sargassum fusiforme by degradation. Int. J. Biol. Macromol. 92, 715–722 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.082

    Article  CAS  PubMed  Google Scholar 

  28. Li, X., Jiao, L.L., Zhang, X., Tian, W.M., Chen, S., Zhang, L.P.: Anti-tumor and immunomodulating activities of proteoglycans from mycelium of Phellinus nigricans and culture medium. Int. Immunopharmacol. 8(6), 909–915 (2008). https://doi.org/10.1016/j.intimp.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  29. Li, S., Gao, A., Dong, S., Chen, Y., Sun, S., Lei, Z., Zhang, Z.: Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. Int. J. Biol. Macromol. 96, 26–34 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y.Y., Xue, Y.T.: Optimization of microwave assisted extraction, chemical characterization and antitumor activities of polysaccharides from Porphyra haitanensis. Carbohydr. Polym. 206, 179–186 (2019). https://doi.org/10.1016/j.carbpol.2018.10.093

    Article  CAS  PubMed  Google Scholar 

  31. Gong, G.P., Dang, T.T., Fang, J., Deng, Y.N., Liu, Q., Dai, W., Sun, J., Wang, L.H., Liu, Y.X., Sun, T.T., Song, S., Fan, L.D., Huang, L.J., Wang, Z.F.: Preparation, structural characterization, and bioactivity of PHPD-IV-4 derived from Porphyra haitanensis. Food Chem. 329, 127042 (2020). https://doi.org/10.1016/j.foodchem.2020.127042

    Article  CAS  PubMed  Google Scholar 

  32. Gros, E.G., Mastronardi, I.O., Frasca, A.R.: P.m.r spectral assignments for O-methyl groups in mono-methylated D-hexoses. Carbohydr. Res. 16, 232–234 (1971). https://doi.org/10.1016/S0008-6215(00)86121-2

    Article  CAS  Google Scholar 

  33. Lahaye, M., Yaphe, W., Viet, M.T.P., Rochas, C.: 13C-n.m.r. Spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides. Carbohydr. Res. 190(2), 249–265 (1989). https://doi.org/10.1016/0008-6215(89)84129-1

    Article  CAS  Google Scholar 

  34. Jin, M., Wang, Y., Huang, M., Lu, Z., Wang, Y.: Sulphation can enhance the antioxidant activity of polysaccharides produced by Enterobacter cloacae Z0206. Carbohydr. Polym. 99, 624–629 (2014). https://doi.org/10.1016/j.carbpol.2013.08.072

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J., Guo, H., Zhang, J., Wang, X., Zhao, B., Yao, J., Wang, Y.: Sulfated modification, characterization and structure–antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydr. Polym. 81(4), 897–905 (2010). https://doi.org/10.1016/j.carbpol.2010.04.002

    Article  CAS  Google Scholar 

  36. Wang, X., Zhang, Z., Yao, Z., Zhao, M., Qi, H.: Sulfation, anticoagulant and antioxidant activities of polysaccharide from green algae Enteromorpha linza. Int. J. Biol. Macromol. 58, 225–230 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  37. Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z.: Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 37(4), 195–199 (2005). https://doi.org/10.1016/j.ijbiomac.2005.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, Y.Y., Wang, L., Zhang, L., Wang, T., Yu, L., Ding, C.B., Yang, R.W., Wang, X.L., Zhou, Y.H.: Characterization, antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge. Int. J. Biol. Macromol. 70, 92–99 (2014). https://doi.org/10.1016/j.ijbiomac.2014.06.036

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, Z., Wang, F., Wang, M., Ma, L., Ye, H., Zeng, X.: A comparative study of the neutral and acidic polysaccharides from Allium macrostemon Bunge. Carbohydr. Polym. 117, 980–987 (2015). https://doi.org/10.1016/j.carbpol.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  40. He, Y., Liu, C., Chen, Y., Ji, A., Shen, Z., Xi, T., Yao, Q.: Isolation and structural characterization of a novel polysaccharide prepared from Arca subcrenata Lischke. J. Biosci. Bioeng. 104(2), 111–116 (2007). https://doi.org/10.1263/jbb.104.111

    Article  CAS  PubMed  Google Scholar 

  41. Shen, Y., Wu, M., Xu, Z., Wan, Y., Zhang, L., Zhang, W., Xia, W.: Structure elucidation and immunological activity of a novel glycopeptide from mannatide. Int. J. Biol. Macromol. 99, 112–120 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  42. Suganuma, H., Fahey, J.W., Bryan, K.E., Healy, Z.R., Talalay, P.: Stimulation of phagocytosis by sulforaphane. Biochem. Biophys. Res. Commun. 405(1), 146–151 (2011). https://doi.org/10.1016/j.bbrc.2011.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFD0400203), and Science and Technology Department of Zhejiang Province of China (2018C02048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Zhou or Ling-Lin Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, YF., Li, YT., Xia, W. et al. Degraded polysaccharides from Porphyra haitanensis: purification, physico-chemical properties, antioxidant and immunomodulatory activities. Glycoconj J 38, 573–583 (2021). https://doi.org/10.1007/s10719-021-10009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-10009-9

Keywords

Navigation