Skip to main content
Log in

Isolation, purification and structural characterization of two pectin‐type polysaccharides from Coreopsis tinctoria Nutt. and their proliferation activities on RAW264.7 cells

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Coreopsis tinctoria Nutt. (C.tinctoria) is an annual herb of the Compositae family with many health benefits, such as clearing heat, antioxidant and anticancer activity. In this paper, two polysaccharides were isolated from C.tinctoria, named CTAP-1 and CTAP-2, respectively. Structure of CTAP-1and CTAP-2 were elucidated by high-performance gel permeation chromatography, chemical derivative analyses, GC-MS and NMR techniques. Results reveal that they both CTAP-1 and CTAP-2 consisted of predominant amounts of galacturonic acid residues along with small amounts of arabinose, rhamnose and galactose.Both them contain homogalacturonan and rhammnogalcturan I regions in different ratio, suggesting their pectin-type features. The proliferation activities of CTAP-1 and CTAP-2 on RAW264.7 cells in vitro were detected. Results show both them have the significant proliferation effect on RAW264.7 cells when the concentration from 40 to 200 µg/mL. Given their structural characteristics and proliferation activities, the pectins are expected to be potential natural immune modulators, which need further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, Z., Li, X., Feng, S., Liu, J., Zhou, L., Yuan, M., Ding, C.: Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int. J. Biol. Macromol. 91, 1025–1032 (2016). https://doi.org/10.1016/j.ijbiomac.2016.06.067

    Article  CAS  PubMed  Google Scholar 

  2. Lo, T.C.T., Jiang, Y.H., Chao, A.L.J., Chang, C.A.: Use of statistical methods to find the polysaccharide structural characteristics and the relationships between monosaccharide composition ratio and macrophage stimulatory activity of regionally different strains of Lentinula edodes. Anal. Chim. Acta 584, 50–56 (2007). https://doi.org/10.1016/j.aca.2006.10.051

    Article  CAS  PubMed  Google Scholar 

  3. Zeng, X., Li, P., Chen, X., Kang, Y., Xie, Y., Li, X., Xie, T., Zhang, Y.: Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int. J. Biol. Macromol. 126, 867–876 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.222

    Article  CAS  PubMed  Google Scholar 

  4. Guo, W.L., Deng, J.C., Pan, Y.Y., Xu, J.X., Hong, J.L., Shi, F.F., Liu, G.L., Qian, M., Bai, W.D., Zhang, W., Liu, B., Zhang, Y.Y., Luo, P.J., Ni, L., Rao, P.F., Lv, X.C.: Hypoglycemic and hypolipidemic activities of Grifolafrondosa polysaccharides and their relationships with the modulation of intestinal microflora in diabetic mice induced by high-fat diet and streptozotocin. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.10.253

    Article  PubMed  Google Scholar 

  5. Veisi, Z., Gallant, N.D., Alcantar, N.A., Toomey, R.G.: Responsive coatings from naturally occurring pectin polysaccharides. Colloids Surf. B Biointerfaces. 176, 387–393 (2019). https://doi.org/10.1016/j.colsurfb.2018.12.060

    Article  CAS  PubMed  Google Scholar 

  6. Mohnen, D.: Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008). https://doi.org/10.1016/j.pbi.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  7. Colodel, C., Bagatin, R.M., das, G., Tavares, T.M., de Petkowicz, C.L.: Cell wall polysaccharides from pulp and peel of cubiu: A pectin-rich fruit. Carbohydr. Polym. 174, 226–234 (2017). https://doi.org/10.1016/j.carbpol.2017.06.052

    Article  CAS  PubMed  Google Scholar 

  8. Mao, G., Li, S., Orfila, C., Shen, X., Zhou, S., Linhardt, R.J., Ye, X., Chen, S.: Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Funct. 10, 7828–7843 (2019). https://doi.org/10.1039/C9FO01534E

    Article  CAS  PubMed  Google Scholar 

  9. Li, S., Yang, G., Yan, J., Wu, D., Hou, Y., Diao, Q., Zhou, Y.: Polysaccharide structure and immunological relationships of RG-I pectin from the bee pollen of Nelumbo nucifera. Int. J. Biol. Macromol. 111, 660–666 (2018). https://doi.org/10.1016/j.ijbiomac.2018.01.015

    Article  CAS  PubMed  Google Scholar 

  10. Wang, M., Liu, Y., Qiang, M., Wang, J.: Structural elucidation of a pectin-type polysaccharide from Hoveniadulcis peduncles and its proliferative activity on RAW264.7 cells. Int. J. Biol. Macromol. 104, 1246–1253 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  11. Tian, Y., Wen, Z., Lei, L., Li, F., Zhao, J., Zhi, Q., Li, F., Yin, R., Ming, J.: Coreopsis tinctoria flowers extract ameliorates D-galactose induced aging in mice via regulation of Sirt1-Nrf2 signaling pathway. J. Funct. Foods. 60, 103464 (2019). https://doi.org/10.1016/j.jff.2019.103464

    Article  CAS  Google Scholar 

  12. Zhang, H., Zhong, J., Zhang, Q., Qing, D., Yan, C.: Structural elucidation and bioactivities of a novel arabinogalactan from Coreopsis tinctoria. Carbohydr. Polym. 219, 219–228 (2019). https://doi.org/10.1016/j.carbpol.2019.05.019

    Article  CAS  PubMed  Google Scholar 

  13. Wang, T., Xi, M., Guo, Q., Wang, L., Shen, Z.: Chemical components and antioxidant activity of volatile oil of a Compositae tea (Coreopsis tinctoria Nutt.) from Mt. Kunlun. Ind. Crops Prod. 67, 318–323 (2015). https://doi.org/10.1016/j.indcrop.2015.01.043

    Article  CAS  Google Scholar 

  14. Li, N., Meng, D., Pan, Y., Cui, Q., Li, G., Ni, H., Sun, Y., Qing, D., Jia, X., Pan, Y., Hou, Y.: Anti-neuroinflammatory and NQO1 inducing activity of natural phytochemicals from Coreopsis tinctoria. J. Funct. Foods. 17, 837–846 (2015). https://doi.org/10.1016/j.jff.2015.06.027

    Article  CAS  Google Scholar 

  15. Guo, J., Wang, A., Yang, K., Ding, H., Hu, Y., Yang, Y., Huang, S., Xu, J., Liu, T., Yang, H., Xin, Z.: Isolation, characterization and antimicrobial activities of polyacetylene glycosides from Coreopsis tinctoria Nutt. Phytochemistry. 136, 65–69 (2017). https://doi.org/10.1016/j.phytochem.2016.12.023

    Article  CAS  PubMed  Google Scholar 

  16. Du, D., Yao, L., Zhang, R., Shi, N., Shen, Y., Yang, X., Zhang, X., Jin, T., Liu, T., Hu, L., Xing, Z., Criddle, D.N., Xia, Q., Huang, W., Sutton, R.: Protective effects of flavonoids from Coreopsis tinctoria Nutt. on experimental acute pancreatitis via Nrf-2/ARE-mediated antioxidant pathways. J. Ethnopharmacol. 224, 261–272 (2018). https://doi.org/10.1016/j.jep.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, W.-S., Sun, Q.-L., Zheng, W., Zhang, Y., Du, J., Dong, C.-X., Tao, N.: Structural characterization of a polysaccharide from Coreopsis tinctoria Nutt. and its function to modify myeloid derived suppressor cells. Int. J. Biol. Macromol. 126, 926–933 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Sun, H., Zhang, J., Chen, F., Chen, X., Zhou, Z., Wang, H.: Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym. 121, 388–402 (2015). https://doi.org/10.1016/j.carbpol.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  19. Fan, R., Zhu, C., Qiu, D., Mao, G., Zeng, J.: Activation of RAW264.7 macrophages by an acidic polysaccharide derived from Citrus grandis ‘Tomentosa.’ Int. J. Biol. Macromol. 156, 1323–1329 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.172

    Article  CAS  PubMed  Google Scholar 

  20. Hartley, J.W., Evans, L.H., Green, K.Y., Naghashfar, Z., Macias, A.R., Zerfas, P.M., Ward, J.M.: Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology. 5, 1 (2008). https://doi.org/10.1186/1742-4690-5-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, X.D., Wu, Q.X., Zhao, J., Su, T., Lu, Y.M., Zhang, W.N., Wang, Y., Chen, Y.: Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactariusdeliciosus. Int. J. Biol. Macromol. 128, 732–739 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.201

    Article  CAS  PubMed  Google Scholar 

  22. Tabarsa, M., You, S., Abedi, M., Ahmadian, N., Li, C., Talapphet, N.: The activation of RAW264.7 murine macrophage and natural killer cells by glucomannogalactan polysaccharides from Tornabeascutellifera. Carbohydr. Polym. 219, 368–377 (2019). https://doi.org/10.1016/j.carbpol.2019.05.044

    Article  CAS  PubMed  Google Scholar 

  23. Guo, M.Z., Meng, M., Duan, S.Q., Feng, C.C., Wang, C.L.: Structure characterization, physicochemical property and immunomodulatory activity on RAW264.7 cells of a novel triple-helix polysaccharide from Craterelluscornucopioides. Int. J. Biol. Macromol. 126, 796–804 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.246

    Article  CAS  PubMed  Google Scholar 

  24. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  25. Blumenkrantz, N., Asboe-Hansen, G.: New method for quantitative determination of uronic acids. Anal. Biochem. 54, 484–489 (1973). https://doi.org/10.1016/0003-2697(73)90377-1

    Article  CAS  PubMed  Google Scholar 

  26. Ciucanu, I., Kerek, F.: A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131, 209–217 (1984). https://doi.org/10.1016/0008-6215(84)85242-8

    Article  CAS  Google Scholar 

  27. Carpita, N.C., Shea, E.M.: Linkage structure of Carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates. In: Biermann, C.J., McGinnis G.D. (eds.) Analysis of carbohydrates by GLC and MS, pp. 157–216. CRC Press, Boca Raton (1988)

    Google Scholar 

  28. Sims, I.M., Carnachan, S.M., Bell, T.J., Hinkley, S.F.R.: Methylation analysis of polysaccharides: Technical advice. Carbohydr. Polym. 188, 1–7 (2018). https://doi.org/10.1016/j.carbpol.2017.12.075

    Article  CAS  PubMed  Google Scholar 

  29. Yapo, B.M.: Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym. Rev. 51, 391–413 (2011). https://doi.org/10.1080/15583724.2011.615962

    Article  CAS  Google Scholar 

  30. Cao, J., Tang, D., Wang, Y., Li, X., Hong, L., Sun, C.: Characteristics and immune-enhancing activity of pectic polysaccharides from sweet cherry (Prunus avium). Food Chem. 254, 47–54 (2018). https://doi.org/10.1016/j.foodchem.2018.01.145

    Article  CAS  PubMed  Google Scholar 

  31. do Nascimento, G.E., Winnischofer, S.M.B., Ramirez, M.I., Iacomini, M., Cordeiro, L.M.C.: The influence of sweet pepper pectin structural characteristics on cytokine secretion by THP-1 macrophages. Food Res. Int. 102, 588–594 (2017). https://doi.org/10.1016/j.foodres.2017.09.037

    Article  CAS  PubMed  Google Scholar 

  32. Peng, Q., Xu, Q., Yin, H., Huang, L., Du, Y.: Characterization of an immunologically active pectin from the fruits of Lycium ruthenicum. Int. J. Biol. Macromol. 64, 69–75 (2014). https://doi.org/10.1016/j.ijbiomac.2013.11.030

    Article  CAS  PubMed  Google Scholar 

  33. do Nascimento, G.E., Iacomini, M., Cordeiro, L.M.C.: New findings on green sweet pepper (Capsicum annum) pectins: Rhamnogalacturonan and type I and II arabinogalactans. Carbohydr. Polym. 171, 292–299 (2017). https://doi.org/10.1016/j.carbpol.2017.05.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [81803682] and Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis [CTD2018-03].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caixia Dong or Juan Du.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, SL., Li, YX., Cui, YS. et al. Isolation, purification and structural characterization of two pectin‐type polysaccharides from Coreopsis tinctoria Nutt. and their proliferation activities on RAW264.7 cells. Glycoconj J 38, 251–259 (2021). https://doi.org/10.1007/s10719-021-09982-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-021-09982-y

Keywords

Navigation